Compartilhamento |
![]() ![]() |
Use este identificador para citar ou linkar para este item:
https://tedebc.ufma.br/jspui/handle/tede/6405
Tipo do documento: | Dissertação |
Título: | Formalismo Hamiltoniano no contexto da quebra de difeomorfismos espontânea |
Título(s) alternativo(s): | Hamiltonian formalism in the context of spontaneous diffeomorphism breaking |
Autor: | SANTOS, João Victor Vieira dos ![]() |
Primeiro orientador: | SCHRECK, Marco |
Primeiro membro da banca: | SCHRECK, Marco |
Segundo membro da banca: | FERREIRA JUNIOR, Manoel Messias |
Terceiro membro da banca: | SANTOS FILHO, Adalto Rodrigues Gomes dos |
Quarto membro da banca: | THIBES, Ronaldo Silva |
Resumo: | O objetivo deste trabalho é, partindo do fato de que a Relatividade Geral (RG) é uma teoria clássica de vínculos, desenvolver a formula ̧cão Hamiltoniana para um modelo efetivo de gravidade modificada que incorpora um campo escalar dinâmico, denotado por u(x), no setor gravitacional mínimo do Modelo Padrão Estendido (MPE). A presença desse campo escalar leva `a quebra espontânea da simetria de difeomorfismo, uma simetria fundamental da Relatividade Geral, parametrizada pelo MPE. Considera-se tal procedimento como um dos mais proeminentes sinais de efeitos físicos na escala de Planck, indicando desvios da gravidade padrão. Para construir a Hamiltoniana, utiliza-se a decomposição (3 + 1) desenvolvida por Arnowitt, Deser e Misner, que consiste em folhear o espaço-tempo quadri-dimensional M em uma família contínua de hipersuperfícies tri-dimensionais Σt, cada uma correspondendo a um tempo constante específico. Tal folheação do espaço- tempo é governada pela função lapso N e pelas componentes Ni do vetor deslocamento, que representam graus de liberdade de calibre associados `a escolha de coordenadas. Em cada hipersuperfície, um conjunto de variáveis canônicas é definido, juntamente com seus momentos conjugados. Essas variáveis e momentos permitem a derivação da Hamiltoniana canônica por meio da transformação de Legendre, fornecendo uma descrição do espaço de fase gravitacional. Uma vez obtida a Hamiltoniana, o próximo passo é analisar os vínculos associados à teoria. Vínculos são condições não-dinâmicas que podem refletir as simetrias subjacentes do sistema. Ao estudar esses vínculos, é possível determinar as equações de movimento para o campo escalar de fundo, a métrica induzida na hipersuperfície e seus momentos canônicos correspondentes. Essas equações são essenciais para estudar a dinâmica da teoria. Veremos que, assim como a teoria de Einstein-Hilbert da gravidade, esse modelo de gravidade modificada também propaga dois graus de liberdade, resultado obtido a partir da análise dos vínculos. Essa característica é consistente com a quebra espontânea da invariância de difeomorfismo induzida pela presença do campo escalar. Ao investigar a dinâmica e os vínculos desse modelo de gravidade modificada, este trabalho visa fornecer insights sobre o comportamento e as implicações de teorias que vão além da RG, lançando luz sobre os possíveis efeitos da quebra da simetria de difeomorfismo. |
Abstract: | The aim of this work is, starting from the fact that General Relativity is a classical theory of constraints, to develop the Hamiltonian formulation for an effective model of modified gravity that incorporates a dynamic scalar field, denoted as u(x), contained in the minimal gravitational sector of the Standard Model Extension. The presence of such a scalar field spontaneously breaks one of the fundamental symmetries of General Relativity, namely diffeomorphism symmetry. This, in turn, is considered one of the most prominent signals for physical effects at the Planck scale. To construct the Hamiltonian, we will make use of the (3 + 1) decomposition, developed by Arnowitt-Deser-Misner, which consists of foliating the four-dimensional spacetime into three-dimensional spacelike hypersurfaces of constant time. This foliation is governed by the lapse functions N and the shift vectors Ni , which represent gauge degrees of freedom. On each hypersurface, a set of canonical variables is defined, to which we associate a set of conjugate momenta, leading to the derivation of the canonical Hamiltonian through the Legendre transformation, which al- lows for a description of the gravitational phase space. Once the Hamiltonian is obtained, it is necessary to analyze constraints and, consequently, obtain the equations of motion associated with the background scalar field, the induced metric on the hypersurface, and their corresponding canonical moments. These latter equations make it possible to study the dynamics of the theory. We will see that, similar to the Einstein-Hilbert theory, our model leads to the propagation of two degrees of freedom, consistent with spontaneous breaking of diffeomorphism invariance. By investigating the dynamics and constraints of this modified gravity model, this work aims to provide insights into the behavior and implications of theories that go beyond General Relativity, shedding light on the possible effects of diffeomorphism symmetry breaking at the Planck scale. |
Palavras-chave: | Formalismo Hamiltoniano; decomposição (3+1); gravitação modificada. Hamiltonian Formalism; decomposition (3+1); modified gravity. |
Área(s) do CNPq: | Física das Partículas e Campos Física |
Idioma: | por |
País: | Brasil |
Instituição: | Universidade Federal do Maranhão |
Sigla da instituição: | UFMA |
Departamento: | DEPARTAMENTO DE FÍSICA/CCET |
Programa: | PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA/CCET |
Citação: | SANTOS, João Victor Vieira dos. Formalismo Hamiltoniano no contexto da quebra de difeomorfismos espontânea. 2023. 101 f. Dissertação (Programa de Pós-Graduação em Física/CCET) - Universidade Federal do Maranhão, São Luís, 2025. |
Tipo de acesso: | Acesso Aberto |
URI: | https://tedebc.ufma.br/jspui/handle/tede/6405 |
Data de defesa: | 13-Out-2023 |
Aparece nas coleções: | DISSERTAÇÃO DE MESTRADO - PROGRAMA DE PÓS-GRADUAÇÃO EM FISICA |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
JOAO_SANTOS.pdf | Dissertação de Mestrado | 1,35 MB | Adobe PDF | Baixar/Abrir Pré-Visualizar |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.