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Abstract

Abstract

Berth Allocation Problem is a proven to be NP-Hard where a set of ships will be served
by a set of berths within a given planning horizon. It’s a well known optimization
problem, generally related to the combinatorial optimization, having algorithms constructed
specifically to deal with problems of that kind. The optimization algorithms can be
classified in a general manner in exact, approximate, metaheuristic or hybridized. A
common approach is to apply exact methods to solve the problem, since them guarantee
the optimum solution, but some cases of a problem is very difficult to be solved by the
exact path. In this case the application of approximate or metaheuristic algorithms is taken,
but without the assurance of optimality. The objective of this work is to contribute to the
study of the berth allocation problem in operational scenarios of bulk ports. The model
employed is a discrete and dynamic version of BAP, named Berth Allocation Problem in
Tidal Bulk ports with Inventory level conditions (BAPTBS). The model was executed
with the Gurobi’s solver, a Greedy Heuristic was proposed and also used as an initial
solution constructor to the solver and to a GRASP metaheuristic and Two versions of an
Evolutionary Clustering Search (ECS) was executed, on e being the standard version and

the other a hybridized version using the solver as local scarcher.

Keywords: Discrete Optimisation, Berth Allocation Problem, Metaheuristics, Gurobi

solver, Greedy algorithms.
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1 Introduction

The Berth Allocation Problem (BAP) assumes that a set of ships are served by a
set of berths within a given planning horizon, in which some variations of the problem
have been proven to be NP-Hard by (LIM, 1998).

According to Bierwirth and Meisel (2010), the BAP can be categorised by its
spatial attribute. It is considered discrete when the quay are partitioned and each partition
(berth) can only attend one vessel at time. Otherwise, it is considered continuous, i.e.,
when the berth is a contiguous space, where a given vessel can be served by more than

one shiploader. Others criteria can be considered and they are summarised in Table 1

Table 1 — Attributes for port classification (KOVAC, 2017)

Spatial attribute | Temporal attribute | Handling time attribute
Discrete Static Fixed times

Continuous Dynamic Position dependent

Hybrid Cyclic QC assignment

Vessel Draft Stochastic QC scheduling

Table 1 organises the features used in classification by a common attribute. The
spatial attribute differentiates by the berths’ organisation in the quay space, in the discrete
case the division between the berths is clear and each ship is served by only one berth. In
the continuous case, there is no division between the berths and one ship can be served by
more than one berth. The hybrid case merge the previous two, defining a clear separation
of the berths’ space and the possibility of more than one berth attend the same ship. The

vessel draft case analyses the availability of mooring a ship considering the ship draft.

The temporal attribute categorises the problem by the ships’ arrival. Considering
the planning horizon, the static case considers that all ships are available to be served. In
the dynamic case the ships will arrive within the planning horizon without a predefined
interval, but the arrival is known. When the interval is defined, is the cyclic case and when

it is not known is the stochastic case.

The handling time attribute deals specifically with the berth itself. Considering
if has a fixed time to serve a ship or if the berth position constrains the possibility of
functioning. The assignment and the scheduling are also considered. To try to solve the

models in the BAP scenario the techniques used are called optimisation algorithms.

The optimisation algorithms can be classified in a general manner in exact,
approximate or hybridised. The exact methods guarantee the optimal solution, if given

enough time and considering the search space and the solution feasibility, but the
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computational cost can be prohibitive for some instances of the problem. In the case of
having enough amount of information about the problem a approximate algorithm can be
used to obtain a high-quality sub-optimal solutions. Hybridised optimisation algorithms
try to use the best features of the two previous approaches(TALBI, 2009). The increasing
processing capacity of computers and paralleling techniques have become hybridised
techniques an interesting approach (STEFANELLO et al., 2011).

Many researches in BAP address specific problems such gas consumption, constraints
related to the quay configuration, being adjacent or opposite, etc. The majority is dealing
with discrete and dynamic version of BAP, but because the high model’s heterogeneity an

objective comparison between them are unavailable (KOVAC, 2017).

A metaheuristic can be defined as an upper level general methodology used as
guiding strategy in designing underlying heuristics that solve specific optimisation problems
(TALBI, 2009). The attribute summary used for classification is presented in Table 2.

Table 2 — Criteria for metaheuristic classification (TALBI, 2009)

Nature inspired Inspired by natural processes

Memory usage Information extracted dynamically is used during the search
Stochastic Random r.ules are applied d.uring the search, di.ffe.rgnt .
final solutions may be obtained from the same initial solution
Make deterministic decisions, the same

initial solution will lead to the same final solution
Population-based search A whole population of solutions is evolved

Single-solution based search | Manipulate and transform a single solution during the search

Deterministic

The objective of this work is to contribute to the study of the berth allocation
problem in operational scenarios of bulk ports. The study is carried out from a mathematical
model originally proposed by (BARROS et al., 2011) and which has been updated recently
to deal with heterogeneous berths (with different throughput).

In this work, the model employed is a discrete and dynamic version of BAP, named
Berth Allocation Problem in Tidal Bulk ports with Inventory level conditions (BAPTBS)
(briefly named as BAPTBI or BAPTBS (BARROS et al., 2011)) that dealing with inventory
constraints on different loads in bulk ports, served by heterogeneous berths in discrete

tidal time windows.

The model is inspired by operation scenarios that arises in the port terminals in
Sao Luis, as the private ones managed by Alumar and Vale. Such ports work with bulks
such as coal, soybeans, bauxite, iron ore, alumina, etc (BARROS et al., 2010). Discrete
time is not a limitation of the model but rather a requirement for decision-making with
strict inventory control in which all levels of raw materials need to be above a contingency
threshold.
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In addition to the commercial solver, other algorithms are used, such as the ECS
framework (Evolutionary Clustering Search (ECS)(OLIVEIRA; LORENA, 2004)), whose
laboratory version is adapted for solving sequencing problems(OLIVEIRA; LORENA,
2007), and the GRASP (Greedy Randomized Adaptive Search Procedure (GRASP)(RESENDE;
RIBEIRO, 2016)), proposed in this work and implemented from several greedy polynomial-

time heuristics.

The main contribution of this work is the validation of the mathematical model for
the heterogeneous case of Berth Allocation Problem in Tidal Bulk ports with Inventory
level conditions (BAPTBS) from a comprehensive computational experiment. There have
been compared computational results from the commercial solver, greedy heuristics and
population metaheuristics, all applied over a set of synthetic problem instances generated

from realistic situations observed in tidal bulk ports at Sao Luis.

The instance dataset consists of a set of small and medium-sized instances representing
a scenario of up to two weeks of operations in large port terminals. The suite of heuristics
and metaheuristics are capable of finding solutions compatible with the commercial solver,

but in less computational time for larger instances.

The structure of this work is organised as follows. Chapter 1 introduces the general
concept of the BAPTBI and a description of a port functioning. Chapter 3 describes
fundamental concepts to understand the development of this work. Chapter 2 summarises
related research works recently published, listing the techniques used and the different
approaches constructed to solve the problem. The objective functions and the constraints
of the model used in this work are explained in chapter 4. The methodology is explored in
Chapter 5 and the optimisation approaches proposed to deal with the problem. Chapter 6
reports and discusses the results obtained, also specifies the performance parameters used.

Finally Chapter 7 makes the conclusion and final appointments.
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2 Related Works

In this chapter the mathematical models and the metaheuristic approaches to BAP
are described. The models related to continuous quays and working with containers was

not considered.

2.1 Mathematical Models

A model S and two extensions of it, dealing with tidal constraints, was proposed
in (ERNST et al., 2017). The two extensions intended to improve performance, The S
VI extension added valid inequalities to the model, leading to a tighter Mixed Integer
Linear Programming (MILP) formulation, even if this means adding redundant constraints
for the integer program. The TI extension added a new variable to the S model to
turn the time discrete, a common assumption in the scheduling literature, this model

was heavier than the previous extension and to solve this was proposed a two-phase method.

A mathematical model that deals with tidal constraints was proposed by (LIU et
al., 2018), specifying aspects such allocation of sections of quays, arrival and departure of
vessels. The model was executed on CPLEX and a Genetic Algorithm was proposed to
solve difficult instances, with 20 or more vessels.

The model in (CORRECHER et al., 2019) deals with different berth locations, being in
an opposite or adjacent side of a given berth, the quay is continuous so the model have
constraints about the overlapping of berths and vessels. Some sets are calculated previously,
using the available data, to reduce the total amount of variables and restrictions in the

model.

A stochastic version of a previous deterministic model in (YAN et al., 2019) is
based on a network berth-flow, dealing with delays on the planning horizon, the model
considers different arrival times, for each vessel and for each berth of different type a
network was constructed. The results shows that the stochastic model surpass the manual
allocation, the deterministic model use the maximum tidal time window and, in some

cases, the manual approach leaves one vessel without service within the planning horizon.

Based on the port of Jorf Lasfar (BOUZEKRI; ALPAN; GIARD, 2020), the largest

in Africa, A model was built to deal with the restrictions of routes made between the
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storage hangars and the berths, the different water depths for allowing a reasonable draft
and heterogeneous berth speeds. Even being inspired by a specific port, the model is
formulated with predicates what gives great flexibility to be adapted to any kind of bulk
port and improves the computational performance. The principal objective of the model is

to maximise the difference between dispatch and the demurrage for all berthed vessels.

To minimise the total amount of C'O, emission and the total travel time taken by
the ships in the context of inland waterway transportation, a river system composed by a
network of rivers that connect hundreds of cities and industrial areas, a bi-objective model
was proposed in (MANEENGAM; UDOMSAKDIGOOL, 2021). Using branch-and-cut
algorithm and a Pareto frontier generated by the e-constraint method, the proposed
model is solved with better results than the old method, which use heuristics that rely on
the employee routing and scheduling capabilities, what cannot guarantee the quality of

solutions.

Making an attempt to integrate the planning and the scheduling decisions to
guarantee that products are stored and shipped within the established schedule, in
(MENEZES; MATEUS; RAVETTI, 2017) a mathematical model was formulated as a
Product Flow Planning and Scheduling Problem (PFPSP) solved by a column generation
procedure and a branch-and-price algorithm (B&P). The results obtained show that
the proposed method arrived to exact solutions in small and medium instances and so
produce upper and lower bound for instances of medium and large-size in scenarios that

optimisation packages are not effective.

2.2 Metaheuristic Approaches

Using decision theory and stochastic optimisation techniques, (CARRER; FERSON;
GREEN, 2020) try to address tide routing problems (cargo loading and ships scheduling
decisions). Considering uncertainty in the sea levels and draft of ships, the model shows
robust results next to optimal than the standard approach considering fixed margins. The
use of Particle Swarm Optimization (PSO) and Monte Carlos simulations was made for
minimise the risk measure, defined considering the expect economic loss when compared

with sea levels previously known.

An Genetic Algorithm (GA), a Simulated Annealing (SA) and an Ant Colony
Optimization (ACO) were compared, by performance, through the elaboration of the

best sequence of berthing aiming to minimise the penalty cost in the berth allocation
in a exportation port, localised in Santa Marta (Colombia) (ATENCIO; CASSERES, 2018).
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The Tactical Berth Allocation Problem (TBAP) and Quay Crane Scheduling
Problem (QCSP) was addressed in (RUIZ et al., 2013) by two versions of the Variable
Neighborhood Search (VNS) metaheuristic, making the comparison between VNS and
Tabu Search combined with Branch and Price (T'S-BP) and VNS with an exact technique
called UDS, the former to solve TBAP and the latter to solve the QCSP.

An heuristic has been proposed in (BARROS et al., 2011) based on the Simulated
Annealing to minimise the handling service time and to solve difficult instances with the

numbers of vessels varying from 10 to 30, each one varying the number of berths.

A Continuous and Discrete BAP was formulated as Generalized Set Partition
Problem (GSPP) in (LIN; TING, 2014) and a Simulated Annealing with restart-strategy
heuristic (SArs) was proposed to solve the two versions and compared with state-of-art
algorithms applied to them. The t-pair test was used and the SArs was equivalent in

performance to the others algorithms, but was statistically superior in the continuous case.

Different versions of Variable Neighbourhood Search (VNS) applied to Dynamic
Minimum Cost Hybrid Berth Allocation Problem (DMCHBAP) was studied in (KOVAC;
DAVIDOVIC; STANIMIROVIC, 2018). The Skewed version (SVNS) was superior in
solution quality and computational cost when compared with the others metaheuristics
and the CPLEX model implementation.

A Reduced version of VNS (RVNS) is studied in (CHEIMANOFF et al., 2020) to
be applied in the continuous case of BAP. The work used three different instance datasets
and the heuristics sorted the ships with distinctive criteria, the RVNS reach the optimum
in almost all instances within 2 minutes against the 2 hours available to the CPLEX

version used to run the model.

A Tterated Greedy Heuristic (IGH) is proposed in (LIN; YING; WAN, 2014) for
minimising the handling service time, using a greedy algorithm to build the initial solution,
applying construction and destruction phases for improvement. The heuristic was tested
with three datasets and the results showed that the IGH is effective.
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2.3 Final considerations

In Table 2.3 metaheuristics and exact methods used in the mentioned papers are

summarised.

Table 3 — Metaheuristics and Exact Methods

Authors Metaheuristics Exact Methods

(Atencio & Casseres, 2018) GA, SA, ACO -

(Ruiz et al, 2013) VNS, TS-BP UDS
(Ruiz & Voss, 2016) Hybrid POPMUSIC -
(Barros et al., 2011) Heuristic, SA -
(Lin; Ying; Wan, 2014) IGH -
(Liu et al., 2018) GA -
(Lin & Ting, 2014) SArs, SA, TS, CS, MA -
(KOVAC et al, 2018) SWO, GVNS, VND, MS-VND -
(Cheimanoff et al., 2020) RVNS, TS, GRASP -

(Le Carrer et al., 2020) - PSO
Maneegan & Udomsakdigoo B&C -

There have been observed that the cases found during this literature review are, for
the most part, specific to certain operational contexts around the world. There is already
a certain effort to formalise methods that produce datasets that are sufficiently generic to

allow a wide comparison of mathematical models and solving algorithms.

However, this work advances towards providing data for experiments and comparison
of algorithms, while remaining specific characteristics of the ports in the Maranhense Gulf

region that have notorious importance for the Brazilian economy.
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3 Main Concepts

In this chapter, techniques related to Operations Research, useful for understanding
this work, such as optimisation algorithms and metaheuristics, are given, ranging from
mathematical modelling techniques and approximate algorithms, as metaheuristics. The
Evolutionary Clustering Search and Greedy-Randomised Search Procedure are highlighted
as interesting approaches. Principal Component Analysis is included as a statistical

technique needed to a specific development to be presented further.

3.1 Mathematical programming

The area emerged in the midst of the World War II for solving problems related
to inspection and repair of airplanes, the improvement of submarine destruction and
stock maintenance. Some phenomenological events can be translated into mathematical
formulation that allows the designer making predictions and analysis about the phenomenon
(ARENALES et al., 2006).

Figure 1 — Modelling Steps (ARENALES et al., 2006)

Reformulating the
variables and
constraints

Mathematical
Modeling

Model adjustment

Using mathematical
pragramming to run
the model

Collecting results and
making analysis and
conclusions

Model Application

Figure 1 indicates the common steps, initiating the cycle by the mathematical modelling,
to arrive in a mathematical model (ARENALES et al., 2006):

o Mathematical Modelling: accordingly to a specialist’s description, the variables and
constraints are identified. Definitions are made based on the performance criteria.
The model is an approximated version of a real case scenario, chasing to have great
fidelity.
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o Model Application: the mathematical model is solved by well-known methods
and algorithms. Commonly incorporated by a computing solver, a software for

mathematical programming.

e Model Adjustment: the results are analysed and the model conformity is verified
by a specialist. Once the results obtained are consistent with reality, the model is

considered validated.

As the image suggests, the process is cyclic and can run indefinitely. The business rules

change over time and the model needs to do the same to remain useful.

3.2 Linear Programming

There exist optimisations models that guide the modelling process, working as a
type of paradigm, e.g., linear, non-linear, integer, constrained programming, among others
(TALBI, 2009). Linear programming can be applied when the objective and constraints

are linear functions.

The standard linear program has the form Ax = b, subject to the non negativity

assumption represented by x > 0. There are four hypothesis that need to be satisfied in a
linear program(BELFIORE; FAVERO, 2013):

« Proportionality: the contribution of every decision variable related to the constraints

and objective functions needs to be directly proportional to its value;

o Additivity: the sum of each decision variable individual contributions represents the

totality for objective functions or every constraint function.

o Divisibility and Non-negativity: Every decision variable needs to assume values

within a given positive interval, even fractional values, considering the constraints;

e Certainty: any coefficient of the objective functions or the constraints are constant

and known.

3.3 Principal Component Analysis

Principal Component Analysis (PCA) is applied in a table when each row represents
an individual and each column a variable, in this case specifically, the variables need to be
quantitative. PCA allows studying the relationship among variables in a K-dimensional
space, including the analysis of the intensity of the relations by a correlation factor, building

synthetic variables (known as principal components) (PAGES, 2014).
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Figure 2 — Cloud of Individuals (PAGES, 2014)

d*(i, 1)

In Figure 2,it is demonstrated the cloud of individuals (1V;), with each individual
having a profile (M;) with coordinates x;; k = 1, K, being developed in the RX dimensional
space, having the distance between two profiles i and [ is measured by the euclidean distance

equation 3.1.

d*(i,1) = zk:(xzk — zy)? (3.1)

This distance is used to measure discrepancy between profiles and the 'peculiarity’ of an

individual.

3.4 Metaheuristics

A meta-heuristic can be defined as high-level general guiding strategy for designing
of optimization algorithms (TALBI, 2009). There are design and implementation concerns
related to modeling, hardware issues, programming, and running environment. Metaheuristic
algorithms can employ different search strategies, such as initial solutions, search operators,
solution representations, as well ass different parameter settings, always aiming to increase

algorithm robustness.

In respect to the domain analysis, there are global and partial exploration strategies.
They differ in the problem subdivision. In the former case, the algorithm explores the
whole search space, making a more thoroughly exploration. The latter assumes solving
a given sub-problem with locally known features. Both strategies can interchange data,

performing a collaborative work to construct a global solution (TALBI, 2009).
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In respect to the function analysis, there are generalist and specialist, the scheme
above can be expanded or re-utilized here. But previous scheme is generalist in the sense
that all the algorithms involved works to solve the same optimization problem, where a
specialist type is the combination of algorithms that solve different problems (TALBI,
2009).

3.4.1 Evolutionary Algorithms

An Evolutionary Algorithm (EA) can be seen as a population-based stochastic
optimization algorithm. Accordingly to Kita (KITA, 2011) an EA is a general tool to solve
different types of optimization problems. When the problem is poorly understood and

there is no specific method to apply to it, the application of an EA is very convenient.

The EA uses the principles of evolution and natural selection, investigated by
Darwin (DARWIN, 1859). When the fittest individual in the struggle to survive can pass
his genome to the next generation offspring. In this perspective, the EA uses a population
of individuals that evolves through generations. The population becomes more and more

fitter by operations of crossover and mutation, metaphorizing nature.

Figure 3 — General schema of an EA by (KITA, 2011)
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The general EA scheme, showed in Figure 3 summarises its functioning. The
individual is an abstract structure that represents a candidate solution of the problem
aimed to be solved. The algorithm designer needs to define the components that best deal
with the fitness (evaluation) function (TALBI, 2009).

The initial population is chosen at random. Each individual must be evaluated by
the fitness function. The process evolves with the selection of individuals for modifying
by crossover or/and mutation. The offspring become the new population and the process

repeats until a max number of generations is reached or other criteria.
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3.4.2 Hybrid Metaheuristic

A main problem with metaheuristics is the early convergence caused by the
generation of competitive solutions in the early iterations. The use of single-based
metaheuristics along with population metaheuristics is a logical step seeking for algorithm

improvements.

Hybrid metaheuristics are combination of metaheuristics with others metaheuristics,
or mathematical programming, more used in the operations research, or constraint
programming, more used in the artificial intelligence community, or machine learning/data
mining techniques. Such algorithms can provide excellent search algorithms. A general
taxonomy is provided by (TALBI, 2009):

Figure 4 — Classification of Hybrid Metaheuristics

Hierarchical Classification Flat Classification

»  Domain

Hybrid metaheuristics

éé
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The hybridisation process can be viewed in either a high-level or low-level perspective.
The former consists of self-contained metaheuristics, so none direct relationship to the
metaheuristics internal workings is made. The latter provide a functional composition of a
single-optimisation (low level) method that replaces a given function of a metaheursitic
(high level).

Besides the architectural perspective, there are more two types related to the search
process itself, the so-called relay approach, running as a pipeline, where the executions
of metaheuristics or related techniques follow a sequential order. The teamwork approach
keeps cooperative agents evolving in parallel, each one performing a search in the solution

space. The possible combinations are described as follows:

o LRH (Low-level Relay Hybrid): representing the class of built-in metaheuristics in

single-based metaheuristics, having few examples.

o LTH (Low-level Teamwork Hybrid):designed to balance the exploration with exploitation,
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since the population-based metaheuristics are well-suited for exploration but having

weak exploitation.

o HRH (High-level Relay Hybrid): a sequence of complete metaheuristics is performed,
playing different role in the search, as exploration the whole population, or sub-

populations or the best solution found so far.

o HTH (High-level Teamwork Hybrid): a team of complete metaheuristics running in

a cooperative fashion.

3.5 Evolutionary Clustering Search

The Evolutionary Clustering Search (ECS) uses clustering to find promising search
areas, defining an area as an abstract search subspace delimited by its neighborhood
relationship. The subspaces can be framed by clusters, defined by the tuple A = (¢, r, s),

where r(radius) can be calculated using some distance metric.

In combinatorial optimization cases, ¢ being the center of the cluster, initially
defined randomly and further walking to more interesting points and s is the associated
search strategy (OLIVEIRA; LORENA, 2004).

Figure 5 — ECS Standard Architecture
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There are 4 ECS components : an Evolutionary Algorithm (EA), an Iterative
Clustering (IC), an Analyzer Module (AM) and a Local Searcher (LS):

e EA: the evolutionary process occurs independently of the remaining parts, working
through the whole process as a solution generator, a Genetic Algorithm is commonly

used.

o IC: is used after the selection or updated executed by the EA, grouping individuals
by the solution they represent and not in a direct process, using the center as an

approximated representation of all the solutions in the cluster ¢
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o AM: indicates a probable promising cluster, by its analysis in regular intervals
of generations, using the cluster density (\) to decide if a cluster remains or is

eliminated.

e LS: is responsible for the exploitation process, being used when a new point is

grouped or an promising area is detected by the AM.
The main equations used by ECS are described bellow:

r, = Sow — Zing (32)

2. {/1C4]
In Eq.3.2 is calculated a common radius for all clusters, in each generation ¢. The
|Ct| indicates the current number of clusters, where initially C; = MC, MC informs the
pre-defined maximum number of clusters. The z,, and x;,; are, respectively, the domain

upper and lower bound of the = variable.

c; =c¢+a (ppr— ) (3.3)

In Eq.3.3 updates the cluster center (c;), by a step of the cluster(c;) toward a
selected individual p; within it, given by a - (pr — ¢;), being a € [0,1] is a disorder degree

associated with the assimilation process.

NS
0; > PD- — 3.4
i (3:4)

Equation 3.4 specifies a threshold that activates the AM to run the LS, where the
0; is the cluster density, representing the total amount of updates and selections made by
the EA, and PD indicates the pressure of density controlling the AM sensibility and NS

informs the number of individuals selected for the evolution process in each generation.

3.6 GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP) is a global optimisation
algorithm, by repeatedly sampling stochastic greedy solutions and a refinement by local
search procedure to reach a local optima. It is centred in a construction mechanism based
on stochastic and greedy step-wise procedure, this approach limits the selection and

order-of-inclusion of the solution elements considering the value they are expected to have.

The algorithm works as follows. It receives a value {a € Q : 0 < o > 1}, the closer
to 1, the greedier the algorithm. A random start solution is constructed to define the

first best solution, then the algorithm runs until reach the optimum. If it is known or the
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Figure 6 — Pseudocode of GRASP by (BROWNLEE, 2011)

Input: o

Output: Spes

Shest < ConstructRandomSolution();

while — StopCondition() do
Scandidate < GreedyRandomizedConstruction(a);
‘Svcasndidate — LocalsearCh(Sca.‘ndidate )
if Cost (Scandidate) < Cost (Spest) then
‘ Sbest — Sca‘ndidate:
end

end

return Spest:

© W N9 Utk W N =

maximum number of iterations. Building a partially greedy solution and applying a local

search to make a refinement, saving the best solution found in the process.

3.7 Final considerations

In this chapter, technical aspects were addressed seeking to clarify concepts inherent
to mathematical and heuristic models for solving combinatorial problems. The main
features of heuristic and metaheuristic algorithms were highlighted. ECS and GRASP
are representative and popular metaheuristics, justifying as main options for a suite of

algorithms capable of solving large instances of BAPTBI.

ECS incorporates the efficiency of population metaheuristic algorithms hybridised
with powerful local secarch engines. However, little or no specific knowledge about the
problem is incorporated. GRASP, in turn, manages to associate heuristic knowledge in
the form of greedy criteria with a multi-start mechanism that makes the algorithm more

robust. Both approaches ensure a good argument in terms of diversified strategies.
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4 BAPTBI

In this chapter, an improvement of the model proposed by (BARROS et al., 2010)
is presented. The decision variable is reformulated as well as the related constraints and

objective functions.

4.1 Initial Assumptions

The model is based on the importation port scenario, having discrete tidal times (&~
12 hours) and discrete berths with different load speeds of bulks. Each ship can only moor
in one berth at time, and each ship have an arrival tidal, within the maximum number
of tidal time windows (TTW). The model was particularly inspired by the ALUMAR’s
port in Sao Luis, Maranhao, dealing with bulk materials like soy, iron, bauxite, coal and
wheat, even so the model is more abstract than real world application; therefore, it is more
academic than industrial( BARROS et al., 2011).

4.2 Input Parameters

Each instance provide a specific set of data and a pre-calculated set(h;), used for

calculating the objective value functions. The parameters are described bellow:

N: set of ships;

e M: set of tidals;

e L: set of berths;

o K: set of operated goods in the yard;

e a;: tidal arrival of ship ;

o 1;: work speed of the berth [;

e ¢ stock initially available for good k;

e ¢;: production rate of good k;

e hy: handling time for ship ¢ in the berth [;

e ¢;x: capacity of ship ¢ of transportation of good k;
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4.3 Decision Variables

The decision variable is a 3-D binary matrix defined by the elements of the sets NV,
M and L.

(4.1)

1 if the ship 7 is allocated to TTW j and berth [
Yiji = )
0 otherwise

4.4 Constraints

There are four constraints related to tidal arrival of the ships, the overlap between

them and the inventory restriction about the acceptable level of each good in it.

a;—1 |L]

Y>> yiu=0, VieN (4.2)

j=1 I=1
In Eq.4.2 the ships cannot be moored before its arrival in the port. For this the tidal times

before its effective arrival are set to 0.

|M| ||

o> v =1, Vie N (4.3)

Jj=a; =1
In Eq.4.3 the tidal times are set to 1, indicating that ships can be served in any tidal after

its arrival.

IN| j+hiy—1

ST Yo < (1 —yii0)[N||M], Vie N,je M,leL (4.4)

n=1 m=j
n#i m<|M|
Equation 4.4 avoids the overlap of ships in the planning horizon, indicating that no ship

will be moored in the berth and within the attendance of any other ship.

INT LI 1,h
ZZ Z mln — Q; + Zl)qﬂc % yizl S j X Cp. +€k7 VJ (- M,k S K (45)
P pp— zl

Equation 4.5 prevents the goods rarefaction, not allowing a ship to be moored if there are

not sufficient good stock to load the ship not reset the inventory levels.

4.5 Objective Functions

Two objective functions are proposed for this model, aiming to attend the minimisation
of handling time and demurrage. Each function is executed apart, resulting in different

solutions for the same instance.
IN| M| |L]|

min Y > D (54 ha — a;) X yig (4.6)

i=1j=11=1
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Equation 4.6 represents the minimisation of the total amount of time taken by a set of
ships to be moored and unberth in the port. This is calculated by the summation of all
the handling time of all ships, the same ship can have different handling times by changing
the berth which it is docked.

IN| [M] |L|

minz Z Zdi(j + hip — ai) X Yiji (4.7)

i=1j=11=1
The demurrage objective function is represented by Eq.4.7, it is a weighted version of the
previous equation. Even seeming similar, the equations put different challenges to the
model, not only needs to minimise the gap between the tidal time of the mooring of a

ship and its arrival time, but also the weight associated with it.

4.6 Final considerations

The mathematical model under study incorporates several improvements over the
previously published version, such as the use of a single decision variable, avoiding extra
constraints for model linearisation. In addition, the model also provides for the possibility
of berths with different throughputs. In bulk ports, berths with higher loading speeds, in

general, are allocated to larger ships.

The mathematical model maintains its original characteristic, which is the discretisation
of the quay and planning horizon, which allows carrying out inventory control at each
time unit. The model does not lose generality when representing the time unit as TTW
since this is a concept that can mean from 12 hour tidal windows or smaller time intervals,

depending on the tide conditions of each port.
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5 Methodology

In this chapter, aspects of the work related to exact and approximating solvers,

instance generation, experimentation, and validation of results are described.

5.1 Solvers

There are some solvers available to deal with the optimisation problems that
operational research deals with, such as Gurobi! and CPLEX 2. Commercial solvers are
generally based on exact methods coming from mathematical programming. However,

there are several metaheuristic frameworks based on heuristic techniques, as ParadisEO 3,
GALib * and BRKGA °.

5.1.1 Commercial solver

Exact methods, usually commercial solvers, play an important role in validating
heuristic algorithms, as they serve as a baseline for comparing results.
In this work we use the Gurobi’s solver, version 8.1 with academic license to run the model
as a Mixed Integer Lincar Programming (MILP) with default configurations to build the

baseline used to compare the results of different algorithms applied to the problem.

This particular solver was chosen by the resources available, the detailed documentation
and the library provided in many programming languages. Also the academic license is
available, allowing to use the solver in a single computer or a university’s local-area network
6

The solver uses simplex or barrier for continuous models and branch-and-cut for
MILP 7. The user can modify a great number of parameters allowing different configurations,
still making possible a performance analysis about these different configurations in solving

the set of instances.

https://www.gurobi.com/resource/starting-with-gurobi/
https://www.ibm.com/support/pages/downloading-ibm-ilog-cplex-optimization-studio-v1290
http://paradiseo.gforge.inria.fr/

https://www.swmath.org/software/4086

http://mauricio.resende.info/doc/brkgaAPI.pdf
https://www.gurobi.com/academia/academic-program-and-licenses/
https://www.gurobi.com/documentation/8.1/refman/cpp_ grbmodel optimize.html

N o Ot R W N
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5.1.2 Metaheuristic framework

Metaheuristic solvers are used to providing quality solutions for large instances
where traditional and exact solvers tend not to find solutions in a reasonable computational
time. In this work, the previously proposed Evolutionary Clustering Search (ECS) has

been tested as an alternative for solving BAP instances.

5.1.3 The Greedy Heuristics

A greedy algorithm makes choices locally optimal hoping to reach near global
optimal solution. In general, algorithms having linear running time growth are interesting
when applied to large instances where exact methods, as those based on Enumeration
or Dynamic Programming, tend to fail in finding quality solutions in a reasonable time
(CORMEN et al., 2009).

The Greedy Heuristic (GH) proposed to solve the BAPTBI, described in Algorithm
1, receives as input the following parameters: S (Set of ships), B (Set of berths), A defined
criteria for building a priority queue and M (A set of Tidals).

The heuristic sorts the ships by a given greedy criteria, as arrival TTW, and for
each element in the ordered set (O), it is defined the berth that offers the minimum time to
complete the service (waiting and handling time). Then the Y set of remaining decisions is

updated. The X criteria is a rate, defined by the parameters related to the ship, is proposed

as follows:
cA=2
. B:m
. D:%
e E=%
e« F = 1

dix (Y, o g aik)
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Algorithm 1 Greedy Heuristic

Require: A\, S, B, M, «
Ensure: Y
Q < buidPriorityQueue(S, \)
Y 0
Zies ZjeM ZZEB Yiji =0
for alli € @ do
best__fo < oo
berth < 0
for all b € B do
delay < waitingTime(i, b)
handling + handlingTime(i, b)
fo < calculateObj Func(delay, handling, i)
if best_ fo > fo then
best__fo <« fo
berth < b
end if
end for
J < defineTidal(i, berth)
I < berth
Yip=1
end for
if infeasible(Y) then
repair(Y)
end if
return Y

In order to let the algorithm well explained, the functions used in its structure
needs to be described. This will be done in the list bellow:

o buildPriorityQueue(S, A) : The function receives the set of ships and a sort criteria

and return an ordered set of ships to be served. Like a heap data structure.

o waitingTime(i,b) : Given a ship 7 and a berth b, the function indicates the number

of tidals a ship will need to wait to be moored in the specified berth.
 handlingTime(i,b) : The function return the amount of tidals needed to serve the
ship.

o calculateObjFunc(delay, handling, i) : Function that calculates the objective function
value using the handling time and the calculated delay, once the objective functions

considered use this for its calculus.

o defineTidal(i,berth) : The function takes a given ship ¢ and a berth b and calculates
the available tidal for berthing.

o infeasible(Y) : It is a binary function that verify the solution feasibility, testing it by

the application of the model’s constraints.

« repair(Y) : It is an abstract function that turn the solution into a viable answer to

the problem.
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5.1.4 GRASP

The GRASP uses the previous greedy heuristic to build the solutions. The solution
are refined by a swap local search, storing the best solution found so far at the end of the

search process.

The swap local searcher divides the ships by their arrival in ¢ sections, given by
performance parameter. A section can be understood by an interval (o) in the arrival set,
having the length defined by the equation 5.1. For each section the ships are compared
and if a swap in their allocated berth improves the solution, the change is accepted and

the procedure goes for all sections.

o= % (5.1)

5.1.5 Evolutionary Clustering Search (ECS)

Evolutionary Clustering Search (ECS) is a generic framework that combines an
evolutionary metaheuristic with a clustering algorithm to detect promising search areas
for subsequently exploiting by problem-specific local search procedures. (OLIVEIRA,;
LORENA, 2007). ECS based approaches have been applied to several optimisation problems
(FILHO; NAGANO; LORENA, 2007; CHAVES; CORREA; LORENA, 2007; CHAVES;
LORENA; MIRALLES, 2009; OLIVEIRA; CHAVES; LORENA, 2013).

The current architecture of an ECS metaheuristic is shown in Fig.5. For sequencing
problems(OLIVEIRA; LORENA, 2007), as Minimisation of Open Stacks Problem (MOSP),
the Local Search component usually is a 2-Opt local search that evaluate all possible valid

combinations in the neighbourhood.

The flexibility of ECS allows replacing the coupled evolutionary algorithm with
any other population metaheuristic capable to feed the clustering process. In addition, the
Local Search engine can also be replaced(OLIVEIRA; CHAVES; LORENA, 2013).

In this work, the 2-Opt has been replaced by a controlled call to the Gurobi’s solver.
It is understood by controlled call to call the solver limiting the number of iterations
so that it assumes the function of a mere local search algorithm. This implementation
decision was mainly motivated by the satisfactory performance reached by Gurobi’s solver,

even facing larger instances.

5.2 Model Instances

The mathematical model has been tested using synthetically generated instances

to allow analysing the model’s scalability as well as the impact of the model’s parameters
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on the solvers’ running time. The instances are generated by algorithmic means, not with
random values. This procedure was adopted to make a smaller search space, keeping the

feasibility and consistency.

In a port import terminal, the raw material needs to be available in yards to feed
the manufacture daily. Negotiation with suppliers and shipowners is carried out well in
advance by the logistics teams. The loaded trips are scheduled in a planning horizon and
delivery lay-day windows are defined so that the operational teams can work in the short
term to prepare the port lineup. Although the logistics teams work with a certain safety
margin, the lineup represents a sequence of decisions that can impact the production of

the manufacture.

An instance generator has been designed to create realistic situations, yet adding a
little more risk of collapse to the manufacturing operation, based on hypothetical situations
that a bulk port deals. Some parameters are considered in the generation process, some of

them are just input parameters,independent set, differently of the dependent set.

The independent set is defined considering a standard bulk port, dealing with
different goods (or raw material - K), equipped with L berths with different throughput
(v7). The number of goods in the port yard also affects the vessels” compartments (capacity
of ship 7 of transportation of good k - ¢;x) and the dimension of other input parameters,

as stock initially available (ej) and production rate (cg).

The maximum number of tidal windows is calculated for each instance based on
the total of cargo transported by all the vessels and the throughput capacity installed
in the port terminal instanced. The maximum number of TTW is defined by @, in the

formula is described bellow :

dieN 2kek ik y 2
|K| |EZEL U — Ykek Ckl

d — (5.2)

where:

e @ is the maximum number of windows for berthing the ships.

e o is a slack variable, empirically defined.

The density is a parameter related to the amount of goods transported by the ship
given by a percentage, i.e. if the total amount of goods is K = 4 and the ships has 75% of

density, each ship works with 3 goods with cargo randomly chosen.

The set of ships increases in a regular basis for each configuration of berths and
goods, building a scalable instances set. The model parameters such as number of ships,
berths, goods and density is given as input and others are defined randomly within a

previously defined interval. An instance is presented as follows.
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Table 4 — Instance example for bulk ports with heterogeneous berths

set N:=123456789 10;

set M:=12345678910111213 141516 171819 20 --- 35;
set K := rawMatterl rawMatter2 rawMatter3 rawMatter4;
set L:=123;

param v :=

15

24

3 2;

param a :=

11

22

10 11;
param e :=
rawMatterl 49

rawMatterd 57;
param ck :=
rawMatterl 3

rawMatterd 2;

param q : rawMatterl rawMatter2 rawMatter3 rawMatterd :=
16000

23000

1010 0 0 0;

Table 4 shows the general structure of an instance. The first 4 lines are the scts, the
K set is constructed with labels, not numbers, but it is built only for readability matters

not having any visible important influence.

non

Each parameter is delimited by the ";" sign, representing the end of data for any
given input. The defined structure could be changed to more common representations, i.e.
CSV(Comma Separated Values), but this transformation will not make any impact in the

problem solution, so this is kept.

5.3 Methodology Flow

An overview of the methodology used to run, test and analyse the experiments can

be done by detailing the main steps taken.

5.3.1 Dataset Creation

Recalling that the model is generic, meaning that no specific port was modelled,
but is flexible enough to be adapted and specified. The model has no real world dataset
per se and an artificial version is required to be executed in the model.

We create the instances within a specified range, previously used in the preceding tests, of
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ships, berths and goods®. The previous instances was handmade, not making the instance
growth systematic and controlled. To contour this problem, we elaborate an algorithm
considering the conjectures exposed in section 5.2.

The goal is to analyse the increasing in the difficult of finding a feasible solution, given by
the time taken to achieve, before the threshold defined (/= 1h20min), The comparison of the
actual created instances and the previous used will not be made because the methodology
used in creating them are different and no objective and effective mean was found to make

the comparison. The amount of instance generated by this method was 48.

5.3.2 Model Analysis

After running the instances, we analyse the results to verify which variables
contributed to hardness the instances, considering the relations between them. The time
taken to find the optimum or a feasible solution was the main criteria used to verify the
instance growth.

The multivariate aspect of the problem leads to different approaches to study the variables
correlation, or fixing some of them to reduce the dimensionality or using statistical tools.
Considering the scenario of quantitative variables and the goal of reducing the amount of

variables to be analysed and tested, the PCA was chosen.

5.3.3 Metaheuristic Framework Analysis

The metaheuristics former exposed will be executed in the same dataset to verify
what of them can reach results near to the obtained by the solver. The metaheuristics are
greedy algorithm, a single-solution based metaheuristic, a population-based and its hybrid
version with the commercial solver. Each metaheuristic will run 10 times and have 10 min
for a complete run. The solver solutions will be defined as the baseline to comparing with

the smaller objective function value obtained by each metaheuristic.

5.4 Final Considerations

This chapter offers a general overview of the steps taken in the execution and analysis
of the problem. Within the methodological plan, it has been presented issues concerning
solvers, instances, and tools which have been employed to validate the mathematical

model.

Some implementation details as well as the greedy criteria employed by the heuristic
algorithms are detailed. It is important to highlight that greedy criteria are used to rank

8 Available at: https://data.mendeley.com/datasets/58ph43s6h4 /1
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the queue of ships and are strongly related to the guidelines and policies for most of
the berthing ports. Finally, the workflow is described considering the problem instance

generation and the main analysis tools.
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6 Computational Experiments

In this chapter, there are presented the computational experiments performed for

validation of generated BAPTBI instances as well as algorithms for solving them.

6.1 Experiment 1

Initially, experiments were conducted on a subset of instances to obtain the optimal
values for the two objective functions (handling time and demurrage) analysed in this
work. Based on the mathematical model, a total of 48 instances has been generated by the
algorithm described in Section 5.2. The instances are the same, but demurrage objective

function is the only using data related to demurrage,

The result can be observed in Table 7, including the time taken by the Gurobi’s
solver. The solver was executed with default configurations, giving 5% of the run-time
to the execution of pre-solve heuristics. The time limit for solver execution is defined as
4,800 seconds (/~ 1h20min).

The results obtained by the application of the Gurobi’s solver on these instances
shows that the optimum was reached in 19 of them for handling time and 26 for demurrage.
Only 9 instances remains with a gap above 10% for handling time and 6 for demurrage.

The results can be seen in Table 6 in the Appendix.

6.2 Experiment 2

The second set of tests is concerned with the performance of the greedy algorithms
and the criteria used. The greedy heuristic (5.1.3) was executed changing the criteria on

the two objective functions and compared with the Gurobi’s solver.

In tables 8 and 9 all the results for the greedy heuristic are presented. Figure 8

presents a subset of instances allowing a graphical analysis.

Figure 7 evidences the superiority of the ‘Arrival” (a;) and the ;% (criteria A and

1

: has the most unstable
qzkxdz

C, respectively) in comparison to the others. The criterion
behaviour and the use of the demurrage parameter seemed to be no effective in the solutions’
quality. Unexpectedly, it is not an excessive assumption to presume that the use of this
parameter has the same effect of the ‘Load’ criterion, once they have an approximated

behaviour.

Analysing Figure 8 it is clear that, against the baseline (Gurobi), the load criteria

(B), defined in 5.1.3, presented low solution quality. The remaining criteria achieve similar
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Figure 7 — GH for Demurrage Figure 8 — GH for Handling Time
Heuristic Comparation (Demurrage) Heuristic Comparation (Handling Service)
Different Rates Performance Different Rates Performance
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results and the preference for one of them is arbitrary, indicating that these criteria have
the same impact in the generation of solutions, even after applying the local search to
them.

6.3 Experiment 3

The third test set is devoted to evaluating the use of the proposed greedy heuristics
in the pre-solver phase of Gurobi. Tables 9 and 8 show the results of the use or not of an
heuristic to provide a feasible initial solution to evaluate the impact of the use of heuristics
in the Gurobi’s solver performance. As shown before, the Gurobi’s solver running without
pre-solve heuristic has an improvement in the speed for finding lesser gaps, in the small
and medium size instances. Otherwise for larger instances, it does not reach even a feasible

solution within the time limit of 4,800 seconds.

Employing the greedy heuristic proposed in chapter 5 using the "Arrival criteria
(A)", the most stable and near to the baseline, the solver can reach the optimum in the
large size instances, even if the gap is the same as the solver without heuristic initialisation,
in the small and medium sized instances. Only one instance was not solvable, in both cases,
the instance with 40 ships, 4 berths and 6 goods. This can be explained by a possible
infeasibility of it, but the solver itself has not detected this situation and the instance

indeed could have a particular difficult degree.

6.4 Experiment 4

Considering the heuristic execution and to evaluate the advantages reached by the
use of different criteria, the GRASP used each version of the previous greedy heuristic to
build the initial solution and apply a local search to them. The results in figures 9 and
10 are coherent with that told previously by the heuristic. The GRASP used 25% of the
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solution constituent elements for building the RCL, having in that configuration, a more

"greedy" than stochastic behaviour.

Figure 9 — GRASP for Demurrage Figure 10 - GRASP for Handling Time
GRASP Analysis (Demurrage) GRASP Analysis (Handling Service)
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4000-
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Figure 10 is related to the handling time objective function. In the general picture
the "Arrival" and "Arrival/Load (Arr/Load)" reached results near the "Gurobi (Baseline)"
in the majority of the instances, but the "Load" criterion had obtained interesting results in
the small instances and having a poor performance in the bigger ones, except the instance
with 50 ships where it wins the two others, different from the results obtained by the
greedy heuristic, once the same criterion doesn’t reached even near the baseline considered
in any instance.

The demurrage objective function is represented in Figure 9. The "Load" criteria again
loses in comparison to the others ones, but when mixed with demurrage in the criteria
"l /Load*Demurrage" the results improved and compete with the others, winning in the
instance with 50 ships obtaining a result equal to the baseline.

Here is important to make a note, there is no criteria that wins in all the instances in the
both objective functions. The possible explanation to this result is that some criteria, even
having a poor general performance in the general scenario, provides a good starting point
to the local search used by the GRASP.

The overview of all the algorithms discussed until now can be analysed in figures
11 and 12. The overview shows a general good performance of the GRASP algorithm in
the handling time objective function, represented in Figure 12, winning or reaching results
near the others algorithms, but losing in the 50 ships instance. The ECS with the two
different local search mechanisms has a stable behaviour through the instances, getting far
away from the baseline with the increasing sizes of the instances. The greedy heuristic
wins only in the instance with 45 ships, almost reaching the baseline, but loses or reaches

the same results in the remain.

Figure 11 is related to the demurrage objective function. The GRASP only wins in
the instance with 50 ships, reaching the value obtained by the baseline and winning all
the others algorithms. The ECS performs better with the 2-Opt local search instead the
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Figure 11 — Overview of Demurrage Figure 12 — Overview of Handling Time
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gurobi’s one, the results take us to consider that the use of a less sophisticated and more
exhaustive local searcher can give better results, because the ECS using gurobi as a local
search gets worse results in the increasing size of instances while the ECS using the 2-Opt

remains stable and competitive in relation to the others algorithms considered.

6.5 Experiment 5

To analyse the possible correlations between the variables of the problem, the PCA
was used. A subset was chosen to verify the linear combinations and define the most
important variables. The output variable was the time taken by the solver to find the
optimum or approximated solution, some measures was implicit defined in the dataset
formulation: the total amount of cargo worked in the port, the sum of the berth speeds

and the total time windows as also used.

In Table 6 the results are summarised. The ‘Time’ column is related to the total
amount of time taken by the solver to find a feasible or the optimum solution of a specific
instance, indicated by the columns N, B and K, as mentioned before the port deals with

ships having 100% of the operated goods, so the density is not specified.

Table 5 — Subset with fixed berths and goods

HS Demurrage
N |B|K| Time | FO | Time FO
1514 |5 | 68,27 475 | 58 1259000
204 |5 | 616,64 | 547 | 269 1419000
25 4 |5 |4801,41 | 689 | 4801 1670000
304 |5 | 4803,88 | 1134 | 4803 3018000
354 |5 |2249,75 | 1086 | 1273 3050000
40 | 4 | 5 | 4800,66 | 2181 | 5430 5484000
45 14 | 5 | 4800,47 | 1590 | 4800 4309000
50 [ 4 | 5 | 4884,66 | 2413 | 5211,73 | 6994000




Chapter 6. Computational Experiments 43

The graphical analysis of the results, to plot a 2-D graph first is necessary to reduce
the number of considered variables. The graph in Figure 13 shows the time taken by the
solver for each ship, fixing the number of berths and goods, evaluating the two objective
functions to see a correlation or not. The same subset will be used to analyse the heuristic
and metaheuristics considered in this work.

Figure shows that the addition of a weight, defined as demurrage(d;), does not affect

Figure 13 — Subset of table 6 for graphical analysis

Gurobi Solver and Time of Execution
Baseline Construction

4000 - 4

Time

Der
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2000~

% % oms B
heavily the results obtained by the solver, even if in some points one function is easier
or harder than the other, so a heavy correlation. It’s clear that the increasing number
of ships directly increases the time taken by the solver to find the optimum or a good
solution candidate. But graphical analysis is an initial and empirical technique to analyse
the results, once the dataset is multidimensional, what makes the visualisation for a robust
analysis difficult. Being necessary the use of more sophisticated techniques to have a solid
away to verify the hypothesis made previously, for this case, the PCA was sclected as an

interesting approach.

The PCA was applied considering the variables in table 7. The first hypothesis is
concerned with the total amount of ships(V), berths(B) and goods(K). The PCA was used
to verify if the set of considered variables have some effect in the output variable(7'ime),
considering the graphical analysis, the N set has an important effect and varying the total

amount of each set was supposed to affect the output variable.

Some variables was implicit defined because they are spread in the dataset. Figures
14 and 15 show the result of PCA application. The figure 15 demonstrate that the three
most important variables was between the implicit ones to explain the data, curiously the
N wvariable is the fourth, showing that the relevance of this variable remains and it also
explain the variations in the objective function value and time needed to solve it.
The PCA shows that the B and K sets can remain fixed because this variables has little
impact in the time expended by the solver and varying the velocity of each berth and
the amount of goods in each ships are a more interesting approach to build a model for

creating "hard" instances.
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Figure 15 — Relation of the 3 most important

Figure 14 — Relation of all variables )
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6.6 Final considerations

The main results of each experiment can be synthesised in the following manner.
In the experiment 6.1 the solver was executed in the default configurations. Reaching
the optimality in 37% of the handling time dataset and 54% of the demurrage. In the
experiment 6.2 focused in applying greedy algorithms for the datasets. Evaluating a set
of criteria while trying to reach results near to optimum. The results showed that from
all the analysed criteria, only the load and the arrival had a relevant impact, the others
reached the same results with very high gaps in comparison with the results obtained by
the solver.
In the experiment 6.3 the use of the proposed greedy heuristic to replace the built-in version
of the solver was considered. To analyse the impact of its use, the solver was run without
the aid of heuristics. We observed that the solver obtained the same results as its execution
in the default version and in some cases a subtle performance gain, even so a more careful
inspection of the cause of this similarity is needed, considering that the initial guess of the
proposed heuristic is much higher than that of the built-in heuristics.. In the experiment
6.4 address the performance of GRASP embedded with the previously proposed heuristic,
as well as the comparison with ECS. We observed that GRASP performs better than
heuristics, however not enough to beat the solver (Gurobi). ECS has stable performance,
very close to the baseline provided by the solver, beating GRASP in almost all evaluated
instances.
In the experiment 6.5 we apply PCA for multidimensional analysis. We observed that

the variables considered in the construction of instances had little impact on the actual
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difficulty of the problem, considering the time taken by the solver as a metric. The results
indicated other variables that can be used in the construction of new instances that do

not vary the amount of berths and products operated by the port.
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7 Conclusion

This work aims to contribute to the study of the dynamic Berth Allocation
Problem in Tidal Bulk ports with Inventory level conditions (BAPTBS) heterogeneous
case, proposed by (BARROS et al., 2011) in the homogeneous case. The mathematical
model is inspired by operation scenarios that arises in the port terminals in Sdo Luis.
The model is discrete for time and berth, allowing a strict inventory control. Commercial
solver, greedy heuristics and metaheuristics are employed to solver medium size problem

instances.

The main contributions are:

1. Validation of the mathematical model for the heterogeneous case of Berth Allocation
Problem in Tidal Bulk ports with Inventory level conditions (BAPTBS);

2. The design of an instance generator to create realistic situations based on hypothetical

situations that a bulk port deals with;

3. A set of small and medium-sized instances representing a scenario of up to two weeks

of operations in a large port terminal;

4. A suite of heuristics and metaheuristics capable of finding solutions compatible with

the commercial solver, but in less computational time.

The model used is generic to the point of great flexibility and simplicity, but the

actual decision variable formulation impacts the space complexity in reasonable meanings.

The algorithms proposed to solve the instances relied in the different sorting rates,
using a heap data structure to build the queue of berthing. Between the 6 elaborated
criteria, only 2 of them make significant difference, the remaining criteria reached similar
results. The permutation approach of ECS was computational expensive when using the

solver as a local searcher.

Future work intends to enrich the current study to contemplate export ports, in
which constraints must consider the capacity of stockyards. Furthermore, other objective
functions, such as makespan, can be validated in order to initiate a multi-objectivity
study. In such study, it is possible to confront the objectives of shipowners, logistics
and operation teams. Finally, it is still necessary to go deeper in terms of approximate

algorithms hybridised with exact algorithms, such as Dynamic Programming.



47

8 Appendices

This chapter contains the complete results of the experiments executed in the
Pantoja cluster. The decision of put them in a separated chapter was to maintain the
aesthetics and an orderly presentation of the subject treated. Other cause is the size of

the tables generated, each one taking a whole page.

Table 6 — Results of Gurobi Solver

Handling time Demurrage

N | B | K| Time FO GAP Time FO GAP

151 4| 5 68.27 475 0.00% 58.04 1259000 0.00%
15| 4 | 6 | 4800.59 | 458 1.75% | 2368.09 | 1173000 0.00%
151 5| 5 71.89 568 0.00% 64.28 1525000 0.00%
151 5| 6 90.9 647 0.00% 71.24 1675000 0.00%
151 6 | 5 24.65 407 0.00% 17 1060000 0.00%
151 6 | 6 24.59 458 0.00% 28.64 1256000 0.00%
20 | 4 | 4 | 261.77 612 0.00% | 169.58 | 1455000 0.00%
20 4] 5 616.64 547 0.00% | 269.26 | 1419000 0.00%
20| 4 | 6 | 2910.88 | 594 0.00% 958.8 1626000 0.00%
20 5 | 4 69.13 505 0.00% 52.48 1338000 0.00%
20 5| 5 138.25 609 0.00% | 4800.49 | 1582000 4.80%
20 5] 6 164.22 762 0.00% | 170.96 | 2022000 0.00%
20 6 | 4 80.28 540 0.00% 60.88 1370000 0.00%
20 6 | 5 95.38 607 0.00% 76.83 1595000 0.00%
20 6 | 6 224.86 816 0.00% | 2229.26 | 2152000 0.00%
25| 4 | 4| 289.33 721 0.00% | 244.68 | 1708000 0.00%
25 | 4 | 5 | 4801.41 | 689 7.84% | 4801.1 | 1670000 7.60%
251 4 | 6 | 4801.77 | 919 7.18% | 4801.76 | 2441000 2.09%
251 5 | 4 | 23794 727 0.00% | 148.96 | 1796000 0.00%
25| 5| 5 674.3 725 0.00% | 567.11 | 1926000 0.00%
25| 5 | 6 | 4801.74 | 1012 1.48% | 4801.43 | 2450000 0.53%
30 | 4 | 4 | 4808.14 | 1105 3.62% | 4801.89 | 2938000 2.79%
30 | 4 | 5 | 4803.88 | 1134 0.79% | 4803.44 | 3018000 0.56%
30 | 4 | 6 | 4806.71 | 1395 1.36% | 2390.61 | 3906000 0.00%
30 | 5 | 4 | 4800.84 | 886 2.26% | 312.71 | 2458000 0.00%
30 | 5 | 5 | 4801.41 | 930 1.51% | 4801.53 | 2429000 1.81%
30 | 5| 6 | 4802.41 | 1109 0.63% | 4802.11 | 2916000 1.27%
35 | 4| 4 | 983.72 896 0.00% | 681.64 | 2502000 0.00%
35 | 4 | 5 | 2249.75 | 1086 0.00% | 1273.31 | 3050000 0.00%
35 | 4 | 6 | 4803.54 | 1234 0.89% | 2114.68 | 3284000 0.00%
35 | 5 | 4 | 4801.28 | 1210 0.41% | 508.54 | 3415000 0.00%
35 | 5 | 6 | 4804.32 | 1597 4.88% | 1555.22 | 4546000 0.00%
40 | 4 | 4 | 4800.82 | 1664 4.87% | 4800.49 | 4813000 2.35%
40 | 4 | 5 | 4800.66 | 2181 8.44% | 5430.46 | 5484000 3.34%
40 | 4 | 6 | 11928.1 | 2151 | 90.37% 11882 | 5977000 | 90.15%
40 | 5 | 4 | 4802.5 | 2015 4.12% | 4800.4 | 5299000 1.02%
40 | 5 | 5 | 4801.25 | 2272 | 10.43% | 4804.58 | 6072000 3.77%
40 | 5 | 6 | 4802.62 | 2661 | 24.16% | 4808.67 | 7261000 | 17.57%
45 | 4 | 4 | 4992.29 | 1699 2.12% | 1493.47 | 3972000 0.00%
45 | 4 | 5 | 4800.47 | 1590 5.97% | 4800.78 | 4309000 1.93%
45 | 4 | 6 | 4800.7 | 2246 | 16.83% | 4800.93 | 5271000 8.16%
45 | 5 | 5 | 4803.67 | 2101 7.28% | 4914.78 | 5514000 3.61%
45 1 5 | 6 | 4801.56 | 2661 | 27.96% | 4800.6 | 6503000 7.66%
50 | 4 | 4 | 4824.35 | 1987 5.74% | 3023.95 | 5161000 0.00%
50 [ 4 | 5 | 4884.66 | 2413 | 87.88% | 4891.54 | 6160000 | 87.83%
50 | 4 | 6 | 4808.95 | 2755 | 28.60% | 4812.62 | 7106000 | 17.35%
50 | 5 | 5 | 4803.8 | 2685 | 21.83% | 4800.91 | 9425000 | 12.63%
50 [ 5 | 6 | 4849.31 | 3526 | 25.52% | 4800.89 | 6091000 | 13.99%
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Table 7 — Instance Variables

N|B| K| M ZleL v ZneN ZkeK Gik kaK ct | Time_TS | Time_ DEM
15 | 4 6 141 65 5865 13 68.27 58.04
15| 5 5 88 75 5698 10 4800.59 2368.09
15| 5 6 108 75 6603 14 71.89 64.28
15| 6 5 41 105 4648 10 90.9 71.24
15| 6 6 54 105 5869 14 24.65 17
20 4 4 119 75 6022 12 24.59 28.64
20 | 4 5 152 75 7192 16 261.77 169.58
20 | 4 6 185 75 8601 17 616.64 269.26
20 | 5 4 64 90 5228 8 2910.88 958.8
20 | 5 5 86 90 6796 11 69.13 52.48
20 | 5 6 107 90 7998 15 138.25 4800.49
20 | 6 4 55 100 5654 14 164.22 170.96
20 | 6 5 69 100 7034 15 80.28 60.88
20 | 6 6 88 100 8633 18 95.38 76.83
25 | 4 4 122 85 7007 13 224.86 2229.26
25 | 4 5 155 85 8794 14 289.33 244.68
25 4 6 183 85 10234 15 4801.41 4801.1
25 | b 4 81 95 6761 12 4801.77 4801.76
25 | 5 5 105 95 8282 16 237.94 148.96
25 | 5 6 128 95 10007 17 674.3 567.11
30 | 4 4 188 65 8417 9 4801.74 4801.43
30 | 4 5 243 65 10489 11 4808.14 4801.89
30 | 4 6 311 65 12919 13 4803.88 4803.44
30 | 5 4 87 95 7519 9 4806.71 2390.61
30 | 5 5 113 95 9281 13 4800.84 312.71
30 | 5 6 143 95 11410 15 4801.41 4801.53
35 | 4 4 128 95 8734 10 4802.41 4802.11
35| 4 5 178 95 11558 14 983.72 681.64
35| 4 6 225 95 14035 17 2249.75 1273.31
35 | 5 4 101 110 10518 6 4803.54 2114.68
35 | 5 6 149 110 14713 11 4801.28 508.54
40 4 4 269 60 11192 8 4804.32 1555.22
40 | 4 5 351 60 14027 10 4800.82 4800.49
40 | 4 6 458 60 16853 14 4800.66 5430.46
40 | 5 4 178 75 11194 12 11928.1 11882
40 | 5 5 230 75 14032 14 4802.5 4800.4
40 | 5 6 290 75 16827 17 4801.25 4804.58
45 | 4 4 220 80 12170 11 4802.62 4808.67
45 4 5 282 80 14868 14 4992.29 1493.47
45 | 4 6 356 80 17965 17 4800.47 4800.78
45 | 5 5 187 95 15298 13 4800.7 4800.93
45 | 5 6 | 237 95 18450 17 4803.67 4914.78
50 | 4 4 227 90 13980 13 4801.56 4800.6
50 | 4 5 296 90 17522 16 4824.35 3023.95
50 | 4 6 384 90 21493 20 4884.66 4891.54
50 | 5 5 228 95 18473 14 4808.95 4812.62
50 | 5 6 237 110 22021 17 4803.8 4800.91
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Table 8 — Gurobi’s Heuristic Initialization - Handling time

Instances Without Heuristic GH Start
Ships | Berths | Goods | Time FO GAP | Time FO GAP
15 4 5 66.42 470 0% 92.36 470 0%
15 4 6 64.77 453 0% 916.51 453 0%
15 5 5 58.06 568 0.18% 67.27 568 0%
15 5 6 77.13 643 0% 109.93 643 0%
15 6 5 16.41 407 0% 19.78 407 0%
15 6 6 25.65 458 0% 36.99 458 0%
20 4 4 138.98 612 0% 142.19 612 0%
20 4 5 146.80 540 0.18% 126.32 540 0%
20 4 6 3958.61 592 0.17% | 3789.87 592 0.17%
20 5 4 81.53 505 0% 74.80 505 0%
20 5 5 4801.12 612 3.59% | 4800.53 609 2.95%
20 5 6 397.71 755 0% 473.65 755 0.13%
20 6 4 61.72 540 0% 63.00 540 0%
20 6 5 66.93 607 0% 70.79 607 0%
20 6 6 164.40 816 0% 157.06 816 0%
25 4 4 212.92 721 0% 528.62 721 0%
25 4 5 282.05 686 0% 282.29 686 0%
25 4 6 419.20 911 0% 433.79 911 0%
25 5 4 216.61 727 0% 290.44 727 0%
25 5 5 296.56 721 0% 314.53 721 0%
25 5 6 4801.68 | 1011 | 0.099% | 4801.52 | 1011 1.08%
30 4 4 4852.47 - - | 4858.08 | 1250 | 13.68%
30 4 5 1805.21 | 1134 1.30% | 1119.42 | 1134 0.09%
30 4 6 4800.66 | 1391 | 2.013% | 3496.46 | 1386 0%
30 5 4 4801.07 883 2.15% | 4800.85 883 2.15%
30 5 5 1029.96 928 0% | 1098.79 928 0%
30 5 6 922.65 | 1103 0% | 1626.01 | 1103 0.72%
35 4 4 4801.19 897 3.45% | 4801.45 915 5.35%
35 4 5 4802.24 | 1088 0.82% | 2234.57 | 1086 0.09%
35 4 6 4803.8 | 1234 0.81% | 4803.88 | 1234 0.24%
35 5 4 4801.41 | 1210 0.16% | 1782.29 | 1210 0%
35 5 6 4802.86 | 1597 0.37% 4801.2 | 1599 0.62%
40 4 4 4800.71 - - 4801.6 | 1697 6.36%
40 4 5 4802.8 - - | 4800.84 | 2254 7.94%
40 4 6 11748.9 - - 11750 | 2172 | 72.01%
40 5 4 4804.61 - - | 4810.89 | 2053 6.23%
40 5 5 4800.34 - - | 4810.66 | 2359 | 11.44%
40 5 6 4803.46 - - | 4805.13 | 2606 | 19.45%
45 4 4 4801.21 | 1704 0.94% | 4804.13 | 1691 0.24%
45 4 5 4804.73 - - | 4804.05 | 1675 8.42%
45 4 6 4803.26 - - | 4804.42 | 2245 | 12.60%
45 5 5 4801.04 - - | 4801.17 | 2116 7.94%
45 5 6 4802.94 - - | 4803.33 | 2603 | 14.60%
50 4 4 4800.05 - - | 4803.98 | 1996 7.86%
50 4 5 4815.76 - - [ 5132.39 | 2286 | 72.88%
50 4 6 4802.77 - - 4806.5 | 2891 | 30.23%
50 5 5 4801.76 - - 4801.5 | 2752 | 21.62%
50 5 6 4802.04 - - | 4801.45 | 3508 | 19.84%
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Table 9 — Gurobi’s Heuristic Initialization - Demurrage

Instances Without Heuristic GH Start
Ships | Berths | Goods | Time FO GAP | Time FO GAP
15 4 5 43.03 | 1242000 | 28.45% 44.96 1242000 | 28.45%
15 4 6 51.25 | 1162000 0% 57.87 1162000 0%
15 5 5 41.74 | 1525000 0% 42.98 1525000 0%
15 5 6 66.93 | 1660000 0% 68.13 1660000 0%
15 6 5 16.48 | 1060000 0% 19.81 1060000 0%
15 6 6 29.92 | 1256000 0% 44.58 1256000 6.96%
20 4 4 91.88 | 1451000 0% 94.75 1451000 0%
20 4 5 135.03 | 1404000 0% 148.39 1404000 0%
20 4 6 1770.71 | 1623000 0% | 1594.42 1623000 0%
20 5 4 37.17 | 1338000 0% 38.53 1338000 0%
20 5 5 76.92 | 1579000 0% 77.49 1579000 0%
20 5 6 102.94 | 2011000 | 0.049% 109.26 2011000 | 0.049%
20 6 4 41.03 | 1370000 0% 42.65 1370000 0%
20 6 5 63.37 | 1591000 0% 63.70 1591000 0%
20 6 6 112.79 | 2152000 0% 113.31 2152000 0%
25 4 4 137.66 | 1708000 0% 146.12 1708000 0%
25 4 5 247.85 | 1643000 0.06% 257.07 1643000 0.06%
25 4 6 319.24 | 2436000 | 0.041% 325.42 2436000 | 0.041%
25 5 4 147.44 | 1796000 0% 147.59 1796000 0%
25 5 5 225.56 | 1914000 0.05% 222.05 1914000 0.05%
25 5 6 374.95 | 2450000 0% 382.91 2450000 0%
30 4 4 4313.76 | 2911000 0% | 4318.55 2911000 0.17%
30 4 5 851.52 | 3008000 0% 858.96 3008000 0%
30 4 6 1672.47 | 3898000 0.15% 1824.5 3898000 0%
30 5 4 204.20 | 2450000 0.04% 206.41 2450000 0%
30 5 5 318.09 | 2427000 0% 320.30 2427000 0%
30 5 6 558.26 | 2895000 0% 558.67 2895000 0%
35 4 4 229.38 | 2502000 0% 232.29 2502000 0%
35 4 5 775.35 | 3050000 0% 790.76 3050000 0.42%
35 4 6 1595.83 | 3249000 0% 1424.7 3249000 0%
35 5 4 478.45 | 3415000 0% | 431.979 3415000 0%
35 5 6 1033.42 | 4546000 0% | 1364.94 4546000 0%
40 4 4 2858.62 | 4801000 0.12% | 4805.64 4805000 0.94%
40 4 5 4805.12 - - | 4810.88 5484000 1.16%
40 4 6 11734.7 - - | 11734.9 - -
40 5 4 2729.12 | 5299000 0% | 2416.99 5299000 0%
40 5 5 4803.9 - - | 4800.72 6020000 0.83%
40 5 6 4802.12 - - | 4801.35 9521000 | 34.32%
45 4 4 2066.98 | 3972000 0% | 1986.64 3972000 0%
45 4 5 4804.37 - - | 2485.14 4303000 0%
45 4 6 4801.39 - - 4802.3 8238000 | 37.23%
45 5 5 3337.27 | 5487000 0% | 2975.87 5487000 0.18%
45 5 6 4803.72 - - 4802.7 8983000 | 31.33%
50 4 4 3780.63 | 5161000 0% | 3469.45 5161000 0%
50 4 5 4876.97 - - | 4829.56 9000000 | 74.91%
50 4 6 4807.6 - - | 4801.62 | 10786000 | 44.54%
50 5 5 4802.05 - - | 4813.13 9431000 | 39.13%
50 5 6 4807.5 - - | 4806.63 | 12990000 | 34.93%
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Table 10 — Standard ECS and Hybrid ECS for handling time

ECS/Opt ECS/Gur

Ships | Berths | Goods | Time | FO AVG | FO MIN | Time | FO AVG | FO MIN
15 4 5 119,47 | 480,3 473 498,73 | 487,2 470
15 4 6 22,74 4749 462 389,27 | 508,2 489
15 5 5 127,99 | 578,7 574 427,43 | 581,6 573
15 5 6 77,58 656,3 647 286,29 | 658,4 645
15 6 5 107,92 | 409,7 407 257,58 | 410,8 407
15 6 6 108,63 | 472,6 458 441,01 | 482 462
20 4 4 36,94 633,3 616 404,54 | 639,7 622
20 4 5 38,13 591,4 557 464,1 604,9 590
20 4 6 115,15 | 699,4 658 500,6 747 670
20 5 4 104,87 | 517,7 508 388,22 | 516,9 508
20 5 5 53,22 632,1 615 436,96 | 641,4 620
20 5 6 68,76 796,8 768 439,85 | 823,5 803
20 6 4 39,63 552 547 353,19 | 601 551
20 6 5 118,7 627,9 613 419,47 | 627,6 621
20 6 6 123,08 | 840,4 827 486,07 | 853,8 834
25 4 4 61,95 744,9 731 467,72 | 755,8 730
25 4 5 36,31 754,8 707 443,64 | 771,1 742
25 4 6 30,22 1007,9 958 401 1044,2 981
25 5 4 2,97 752,7 733 496,96 | 760,4 735
25 5 5 96,68 791,1 751 384,66 | 809,6 77
25 5 6 40,77 1070,2 1051 468,61 | 1102 1043
30 4 4 73,94 1256 1195 460,49 | 1374,5 1267
30 4 5 35,04 1345,6 1232 483,93 | 1430,5 1298
30 4 6 86,56 1756 1639 423,37 | 2654,12 1853
30 5 4 96,68 940,7 914 365,87 | 1000,8 934
30 5 5 93,47 1014,7 979 516,24 | 1080,3 1004
30 5 6 64,71 1238,9 1178 459,09 | 1326,7 1261
35 4 4 73,5 1012,8 976 495,27 | 1022,2 976
35 4 5 24,79 1262,4 1186 535,71 | 1291,9 1207
35 4 6 36,59 1434,5 1344 431,22 | 1517,3 1424
35 5 4 8,58 1289,1 1248 455,58 | 1333,9 1296
35 5 6 73,61 1730,2 1682 404,34 | 1785,9 1746
40 4 4 81,12 2173,8 2055 449,92 | 2145,9 1983
40 4 5 122,29 | 2664 2522 360,26 | 2863,2 2705
40 4 6 150,81 | 3260,5 2671 408,52 | 7824 2775
40 5 4 42,83 2189,8 2072 470,89 | 2289,4 2221
40 5 5 63,04 2605,8 2440 368,69 | 2818,3 2734
40 5 6 141,21 | 3004,2 2829 347,93 | 3307,7 3107
45 4 4 91,05 1926,3 1822 462,16 | 1963,2 1880
45 4 5 160,31 | 1983,7 1859 438,26 | 2179,3 1965
45 4 6 202,74 | 2610,3 2456 338,17 | 31214 2777
45 5 5 54,56 2426 2343 357,89 | 2496,3 2252
45 5 6 135,12 | 2907,6 2683 322,29 | 34548 2934
50 4 4 122,49 | 2328,5 2152 422,63 | 2345,7 2229
50 4 5 205,68 | 2783,5 2564 383,23 | 3025,7 2703
50 4 6 370,78 | 7420 3992 387,53 | 11890,8 4839
50 5 5 128,46 | 3130,9 2969 390,16 | 3287,2 3043
50 5 6 157,68 | 3825,4 3632 305,2 3871,7 3719
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Table 11 — Standard ECS and Hybrid ECS for Demurrage

ECS/Opt ECS/Gur

Ships | Berths | Goods | Time | FO AVG | FO MIN | Time | FO AVG | FO MIN
15 4 5 66,59 1310871 1267000 443,15 | 1348175 1293000
15 4 6 133,05 | 1257300 1207000 382,08 | 1342101 1233000
15 5 5 152,07 | 1562232 1534000 401,94 | 1608075 1552000
15 5 6 114,1 1768413 1701000 354,26 | 1823813 1782000
15 6 5 91,19 1042823 1033159 262,56 | 1072322 1054108
15 6 6 46,66 1250772 1239136 418,26 | 1296366 1267071
20 4 4 117,79 | 1565500 1489000 513,07 | 1628100 1583000
20 4 5 159,18 | 1587400 1457000 505,64 | 1652567 1522000
20 4 6 49,15 1878236 1769000 490,93 | 2100266 1838565
20 5 4 251,43 | 1396753 1355076 512,99 | 1495548 1440076
20 5 5 68,72 1673330 1589000 465,06 | 1714292 1667101
20 5 6 93,4 2134798 2047546 439,5 2260718 2112244
20 6 4 92,15 1429439 1395136 436,79 | 1546429 1477198
20 6 5 37,86 1708883 1658164 436,18 | 1814761 1721254
20 6 6 55,46 2347963 2278104 528,58 | 2455238 2335000
25 4 4 24,92 1929600 1826000 463,3 1932100 1848000
25 4 5 121,12 | 1965561 1851000 520,4 2047029 1922789
25 4 6 67,46 2862521 2737000 454,32 | 3139634 2915336
25 5 4 30,54 2004396 1957000 501,9 2078778 1974092
25 5 5 3,43 2192487 2103117 434,34 | 2350581 2247000
25 5 6 10,99 2925559 2677000 412,97 | 3112651 2876000
30 4 4 19,1 3556676 3359870 381,45 | 3713481 3396925
30 4 5 57,14 3786515 3531000 391,71 | 4343449 3808839
30 4 6 34,86 4728856 4470493 333,74 | 5741160 5433059
30 5 4 4,07 2802066 2728291 465,03 | 2999442 2843456
30 5 5 61,5 2851104 2725254 480,5 3079955 2918260
30 5 6 16,42 3649849 3152000 395,13 | 4217091 3866163
35 4 4 62,84 3047914 2771000 510,99 | 3177577 2894000
35 4 5 24,73 3828534 3624000 510,68 | 4280473 3930000
35 4 6 79,67 4255325 3890883 337,12 | 4877786 4493511
35 5 4 37,77 3927111 3802123 429,02 | 4324800 4147123
35 5 6 30,09 5264286 5039167 338,4 6117178 5657499
40 4 4 91,91 6076942 5428000 358,6 6938672 6323998
40 4 5 134,03 | 7223055 6940000 330,83 | 9275649 8346696
40 4 6 273,6 7805226 6811598 248,58 | 10344244 | 9465996
40 5 4 35,19 6779143 6348000 337,47 | 7602738 7104000
40 5 5 83,63 7617312 7193267 173,16 | 9153594 8444000
40 5 6 110,03 | 8468918 7825667 249,1 10343893 | 8942985
45 4 4 65,01 5251699 4593000 460,19 | 6125512 5330927
45 4 5 158,73 | 6274212 5573315 460,92 | 7142983 6756480
45 4 6 219,62 | 7609534 6526000 330,78 | 9207713 8039427
45 5 5 58,37 7074094 6683000 262,97 | 8380760 7936178
45 5 6 120,4 8391506 7715000 161,02 | 10690773 | 9575255
50 4 4 113,16 | 6741337 6322000 459,8 7874215 7146449
50 4 5 162,39 | 7661831 7244346 345,16 | 9248178 8621745
50 4 6 370,55 | 10736721 9046398 275,23 | 12028122 10574983
50 5 5 147,43 | 8378064 7683732 187,54 | 10027291 8793789
50 5 6 126,1 11190925 10798253 | 288,58 | 13745030 12715000
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Table 12 — Greedy Heuristic - Handling time (All Criteria)

Criteria A B C

Ships | Berths | Goods | Time FO Time FO Time FO

15 4 5 0.000114 | 655.00 0.000057 | 559.00 0.000056 | 655.00
15 4 6 0.000118 | 823.00 0.000061 | 10197.00 0.000062 | 823.00
15 5 5 0.000085 | 680.00 0.000071 | 786.00 0.000067 | 680.00
15 5 6 0.000088 | 781.00 0.000174 | 1030.00 0.000077 | 781.00
15 6 5 0.000066 | 442.00 0.000111 | 496.00 0.000055 | 439.00
15 6 6 0.000131 | 674.00 0.000148 | 532.00 0.000066 | 674.00
20 4 4 0.000088 | 713.00 0.000156 | 957.00 0.000168 | 714.00
20 4 5 0.000106 | 1077.00 | 0.000136 | 3311.00 0.000212 | 1077.00
20 4 6 0.000116 | 1221.00 | 0.000094 | 59990.00 0.000136 | 1217.00
20 5 4 0.000090 | 703.00 0.000077 | 671.00 0.000078 | 701.00
20 5 5 0.000103 | 690.00 0.000093 | 983.00 0.000091 | 693.00
20 5 6 0.000126 | 954.00 0.000111 | 1086.00 0.000104 | 955.00
20 6 4 0.000105 | 579.00 0.000094 | 845.00 0.000098 | 579.00
20 6 5 0.000123 | 658.00 0.000107 | 951.00 0.000105 | 671.00
20 6 6 0.000155 | 863.00 0.000129 | 1089.00 0.000132 | 864.00
25 4 4 0.000108 | 754.00 0.000113 | 1674.00 0.000093 | 753.00
25 4 5 0.000101 | 812.00 0.000123 | 5869.00 0.000101 | 777.00
25 4 [§ 0.000112 | 993.00 0.000128 | 17701.00 0.000120 | 993.00
25 5 4 0.000123 | 786.00 0.000139 | 1184.00 0.000113 | 782.00
25 5 5 0.000115 | 858.00 0.000132 | 4152.00 0.000124 | 857.00
25 5 6 0.000142 | 1092.00 | 0.000164 | 5882.00 0.000150 | 1095.00
30 4 4 0.000142 | 1216.00 | 0.000172 | 8669.00 0.000165 | 1219.00
30 4 5 0.000201 | 1216.00 | 0.000197 | 6830.00 0.000200 | 1213.00
30 4 6 0.000246 | 1652.00 | 0.000265 | 67013.00 0.000258 | 1652.00
30 5 4 0.000133 | 946.00 0.000152 | 1223.00 0.000140 | 946.00
30 5 5 0.000150 | 1027.00 | 0.000176 | 5023.00 0.000160 | 1018.00
30 5 6 0.000188 | 1294.00 | 0.000232 | 11259.00 0.000197 | 1289.00
35 4 4 0.000134 | 997.00 0.000163 | 1504.00 0.000142 | 997.00
35 4 5 0.000165 | 1170.00 | 0.000246 | 2770.00 0.000400 | 1167.00
35 4 6 0.000197 | 1396.00 | 0.000239 | 19479.00 0.000476 | 1397.00
35 5 4 0.000190 | 1254.00 | 0.000249 | 1818.00 0.000414 | 1255.00
35 5 6 0.000267 | 1646.00 | 0.000697 | 2892.00 0.000362 | 1640.00
40 4 4 0.000291 | 1957.00 | 0.000655 | 12707.00 0.000293 | 1953.00
40 4 5 0.000425 | 3433.00 | 0.000957 | 13730.00 0.000430 | 3298.00
40 4 6 0.000476 | 5315.00 | 0.000515 | 254482.00 | 0.001099 | 5317.00
40 5 4 0.000356 | 2366.00 | 0.000448 | 3605.00 0.000829 | 2364.00
40 5 5 0.000459 | 3569.00 | 0.000518 | 13560.00 0.000577 | 3571.00
40 5 6 0.001209 | 4013.00 | 0.000584 | 39079.00 0.000672 | 4021.00
45 4 4 0.000611 | 1724.00 | 0.000809 | 8065.00 0.000277 | 1716.00
45 4 5 0.000687 | 1716.00 | 0.000512 | 33089.00 0.000349 | 1721.00
45 4 6 0.000475 | 2261.00 | 0.001163 | 54958.00 0.000403 | 2265.00
45 5 5 0.000403 | 2115.00 | 0.000536 | 9308.00 0.000418 | 2121.00
45 5 6 0.000490 | 2607.00 | 0.000605 | 11061.00 0.000491 | 2611.00
50 4 4 0.000401 | 3505.00 | 0.000461 | 3594.00 0.000412 | 3520.00
50 4 5 0.000467 | 4237.00 | 0.000597 | 55470.00 0.000461 | 4237.00
50 4 6 0.000545 | 5244.00 | 0.000632 | 166038.00 | 0.000563 | 5085.00
50 5 5 0.000682 | 5328.00 | 0.000628 | 3455.00 0.000696 | 5328.00
50 5 6 0.000712 | 4510.00 | 0.000715 | 4354.00 0.000688 | 4511.00
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Table 13 — Greedy Heuristic - Demurrage (All Criteria) - Part 1/2
Criteria A B C

Ships | Berths | Goods | Time FO Time FO Time FO

15 4 5 0.000110 | 1684000.00 0.000060 | 2112976.00 0.000119 | 1672000.00
15 4 6 0.000087 | 1612000.00 0.000068 | 2129313.00 0.000134 | 1557000.00
15 5 5 0.000082 | 1828000.00 0.000075 | 2218000.00 0.000095 | 1828000.00
15 5 6 0.000100 | 2180000.00 0.000089 | 2663781.00 0.000101 | 2180000.00
15 6 5 0.000064 | 1230000.00 0.000056 | 1593165.00 0.000057 | 1218000.00
15 6 6 0.000079 | 1578000.00 0.000068 | 1534142.00 0.000069 | 1578000.00
20 4 4 0.000089 | 2016000.00 0.000087 | 2931000.00 0.000073 | 2029000.00
20 4 5 0.000094 | 1589000.00 0.000113 | 4043926.00 0.000082 | 1637000.00
20 4 6 0.000110 | 1967000.00 0.000115 | 4022843.00 0.000097 | 2096000.00
20 5 4 0.000088 | 1644000.00 0.000082 | 2054000.00 0.000076 | 1650000.00
20 5 5 0.000193 | 2109000.00 0.000208 | 2225262.00 0.000091 | 2106000.00
20 5 6 0.000170 | 2680000.00 0.000116 | 2849000.00 0.000108 | 2747000.00
20 6 4 0.000205 | 1705066.00 0.000119 | 2167131.00 0.000095 | 1705066.00
20 6 5 0.000194 | 2195000.00 0.000114 | 2961421.00 0.000107 | 2166000.00
20 6 6 0.000218 | 2755000.00 0.000149 | 2995103.00 0.000140 | 2787000.00
25 4 4 0.000124 | 2409000.00 0.000132 | 4457338.00 0.000094 | 2418000.00
25 4 5 0.000118 | 2250000.00 0.000122 | 3409087.00 0.000100 | 2200000.00
25 4 6 0.000140 | 2904000.00 0.000147 | 4707604.00 0.000131 | 2922000.00
25 5 4 0.000137 | 2735000.00 0.000127 | 3564108.00 0.000114 | 2680000.00
25 5 5 0.000144 | 2503000.00 0.000155 | 3232939.00 0.000124 | 2641000.00
25 5 6 0.000181 | 3374000.00 0.000176 | 4366651.00 0.000161 | 3599000.00
30 4 4 0.000176 | 3934000.00 0.000198 | 5758180.00 0.000151 | 3906000.00
30 4 5 0.000178 | 4103000.00 0.000260 | 6199556.00 0.000185 | 4108000.00
30 4 6 0.000334 | 5186000.00 0.000703 | 8355419.00 0.000228 | 5239000.00
30 5 4 0.000303 | 3357000.00 0.000375 | 3913226.00 0.000142 | 3264000.00
30 5 5 0.000267 | 3219000.00 0.000298 | 3898052.00 0.000187 | 3279000.00
30 5 6 0.000230 | 4029000.00 0.000278 | 6650537.00 0.000204 | 3959000.00
35 4 4 0.000161 | 3344000.00 0.000235 | 6196000.00 0.000140 | 3407000.00
35 4 5 0.000202 | 4184000.00 0.000274 | 7316707.00 0.000192 | 4130000.00
35 4 6 0.000237 | 4759000.00 0.000307 | 7632279.00 0.000234 | 4774000.00
35 5 4 0.000192 | 4665000.00 0.000524 | 6528488.00 0.000200 | 4709000.00
35 5 6 0.000251 | 6073000.00 0.000694 | 7857006.00 0.000272 | 6094000.00
40 4 4 0.000260 | 6132000.00 0.000401 | 11558776.00 | 0.000276 | 6173000.00
40 4 5 0.000795 | 7612000.00 0.000532 | 15910480.00 | 0.000364 | 7646000.00
40 4 6 0.000973 | 8326000.00 0.000625 | 22341744.00 | 0.000446 | 8291000.00
40 5 4 0.000343 | 7597000.00 0.000452 | 8537903.00 0.000348 | 7592000.00
40 5 5 0.000419 | 8705000.00 0.000589 | 11822509.00 | 0.000427 | 9001000.00
40 5 6 0.000496 | 9806000.00 0.000651 | 15493106.00 | 0.001137 | 9804000.00
45 4 4 0.000279 | 6385000.00 0.000774 | 8714197.00 0.000652 | 6324000.00
45 4 5 0.000298 | 6134000.00 0.000909 | 13448112.00 | 0.000315 | 6248000.00
45 4 6 0.000401 | 8357000.00 0.000510 | 14142594.00 | 0.000474 | 8258000.00
45 5 5 0.000453 | 7506000.00 0.000518 | 11059681.00 | 0.000508 | 7437000.00
45 5 6 0.000481 | 9141000.00 0.000580 | 14762702.00 | 0.000489 | 9095000.00
50 4 4 0.000364 | 6784000.00 0.000524 | 14207129.00 | 0.000337 | 6753000.00
50 4 5 0.000398 | 9105000.00 0.000574 | 14403856.00 | 0.000454 | 9128000.00
50 4 6 0.000488 | 10757780.00 | 0.000669 | 14720250.00 | 0.000508 | 10915780.00
50 5 5 0.000545 | 9427000.00 0.000722 | 14446710.00 | 0.000557 | 9476000.00
50 5 6 0.000611 | 12979000.00 | 0.000780 | 18458000.00 | 0.000626 | 13008000.00
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Table 14 — Greedy Heuristic - Demurrage (All Criteria) - Part 2/2

Criteria D E F
Ships | Berths | Goods | Time FO Time FO Time FO
15 4 5 0.000053 | 2050418.00 0.000118 | 2050418.00 0.000135 | 2382304.00
15 4 6 0.000068 | 2957767.00 0.000156 | 2957767.00 0.000109 | 2295863.00
15 5 5 0.000070 | 2319000.00 0.000093 | 2319000.00 0.000091 | 2557000.00
15 5 6 0.000107 | 2746759.00 0.000103 | 2746759.00 0.000105 | 2730451.00
15 6 5 0.000052 | 1613110.00 0.000057 | 1613110.00 0.000069 | 1323055.00
15 6 6 0.000150 | 1825142.00 0.000085 | 1825142.00 0.000083 | 1628142.00
20 4 4 0.000157 | 2612000.00 0.000076 | 2612000.00 0.000094 | 1896000.00
20 4 5 0.000200 | 4426197.00 0.000100 | 4426197.00 0.000118 | 2859057.00
20 4 6 0.000150 | 4246668.00 0.000117 | 4246668.00 0.000142 | 3781851.00
20 5 4 0.000082 | 2124074.00 0.000079 | 2124074.00 0.000100 | 1927000.00
20 5 5 0.000096 | 2668099.00 0.000096 | 2668099.00 0.000244 | 2719049.00
20 5 6 0.000149 | 2693854.00 0.000109 | 2693854.00 0.000252 | 2972201.00
20 6 4 0.000092 | 2501198.00 0.000105 | 2501198.00 0.000144 | 2130132.00
20 6 5 0.000111 | 2383164.00 0.000112 | 2383164.00 0.000163 | 2676082.00
20 6 6 0.000158 | 3352103.00 0.000149 | 3352103.00 0.000186 | 3331103.00
25 4 4 0.000108 | 3880660.00 0.000109 | 3880660.00 0.000128 | 2667400.00
25 4 5 0.000106 | 3200100.00 0.000109 | 3200100.00 0.000139 | 2287638.00
25 4 6 0.000131 | 5338549.00 0.000131 | 5338549.00 0.000172 | 3330694.00
25 5 4 0.000143 | 2832013.00 0.000119 | 2832013.00 0.000148 | 2580000.00
25 5 5 0.000152 | 3306159.00 0.000190 | 3306159.00 0.000170 | 3087255.00
25 5 6 0.000160 | 4632000.00 0.000358 | 4632000.00 0.000218 | 4444429.00
30 4 4 0.000205 | 5395616.00 0.000189 | 5395616.00 0.000217 | 4648390.00
30 4 5 0.000226 | 5960040.00 0.000197 | 5960040.00 0.000246 | 6296871.00
30 4 6 0.000349 | 8572290.00 0.000287 | 8572290.00 0.000287 | 7911987.00
30 5 4 0.000184 | 4458629.00 0.000155 | 4458629.00 0.000188 | 3453626.00
30 5 5 0.000205 | 4420244.00 0.000175 | 4420244.00 0.000191 | 3927166.00
30 5 6 0.000234 | 5435012.00 0.000223 | 5435012.00 0.000227 | 4422000.00
35 4 4 0.000184 | 6499657.00 0.000180 | 6499657.00 0.000197 | 5196000.00
35 4 5 0.000261 | 6347905.00 0.000201 | 6347905.00 0.000212 | 5693635.00
35 4 6 0.000266 | 8519360.00 0.000269 | 8519360.00 0.000266 | 7363184.00
35 5 4 0.000224 | 5927368.00 0.000244 | 5927368.00 0.000230 | 4674122.00
35 5 6 0.000294 | 7701714.00 0.000292 | 7701714.00 0.000319 | 6777896.00
40 4 4 0.000395 | 11457362.00 | 0.000396 | 11457362.00 | 0.000448 | 11144940.00
40 4 5 0.000485 | 14249341.00 | 0.000475 | 14249341.00 | 0.000517 | 14616997.00
40 4 6 0.000638 | 20847332.00 | 0.000653 | 20847332.00 | 0.000707 | 20529648.00
40 5 4 0.000442 | 9990599.00 0.000439 | 9990599.00 0.000423 | 8321629.00
40 5 5 0.000491 | 12976244.00 | 0.000490 | 12976244.00 | 0.000565 | 10418451.00
40 5 6 0.000692 | 14655344.00 | 0.000652 | 14655344.00 | 0.000639 | 13061085.00
45 4 4 0.000297 | 8339000.00 0.000317 | 8339000.00 0.000352 | 7971328.00
45 4 5 0.000432 | 12358609.00 | 0.000433 | 12358609.00 | 0.000411 | 8269895.00
45 4 6 0.000542 | 16544277.00 | 0.000522 | 16544277.00 | 0.000486 | 9533788.00
45 5 5 0.000534 | 11205952.00 | 0.001206 | 11205952.00 | 0.000542 | 10539036.00
45 5 6 0.000632 | 15083435.00 | 0.001423 | 15083435.00 | 0.000590 | 10556922.00
50 4 4 0.000479 | 15158170.00 | 0.000477 | 15158170.00 | 0.000444 | 10291162.00
50 4 5 0.000556 | 15759931.00 | 0.000556 | 15759931.00 | 0.000646 | 13252399.00
50 4 6 0.000674 | 16813922.00 | 0.000673 | 16813922.00 | 0.000668 | 15608989.00
50 5 5 0.000664 | 13264998.00 | 0.001513 | 13264998.00 | 0.000754 | 12586428.00
50 5 6 0.000836 | 16860500.00 | 0.001880 | 16860500.00 | 0.001801 | 16696321.00
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Table 15 — GRASP for handling time (All criteria)

A B

Ships | Berths | Goods | Time | FO Time | FO Time | FO

15 4 5 515.00 | 563.00 274.30 | 531.00 516.70 | 562.00
15 4 6 157.30 | 674.00 181.20 | 554.00 157.50 | 674.00
15 5 5 327.90 | 621.00 17.00 587.00 327.90 | 621.00
15 5 6 327.00 | 621.00 17.00 587.00 327.00 | 621.00
15 6 5 327.00 | 621.00 17.00 587.00 327.00 | 621.00
15 6 6 327.00 | 621.00 17.00 587.00 327.00 | 621.00
20 4 4 242.30 | 648.00 107.30 | 632.00 236.90 | 647.00
20 4 5 37.10 861.00 443.00 | 671.00 37.10 861.00
20 4 6 49.20 998.00 210.80 | 784.00 334.20 | 982.00
20 5 4 49.00 998.00 220.00 | 784.00 334.00 | 982.00
20 5 5 49.00 998.00 220.00 | 784.00 334.00 | 982.00
20 5 6 49.00 998.00 220.00 | 784.00 334.00 | 982.00
20 6 4 49.00 998.00 220.00 | 784.00 334.00 | 982.00
20 6 5 49.00 998.00 220.00 | 784.00 334.00 | 982.00
20 6 6 49.00 998.00 220.00 | 784.00 334.00 | 982.00
25 4 4 85.10 721.00 85.10 863.00 208.60 | 721.00
25 4 5 131.10 | 750.00 351.70 | 937.00 542.70 | 734.00
25 4 6 552.70 | 980.00 44.50 1290.00 550.20 | 979.00
25 5 4 571.00 | 980.00 46.00 1290.00 555.00 | 979.00
25 5 5 571.00 | 980.00 46.00 1290.00 555.00 | 979.00
25 5 6 107.50 | 1036.00 | 46.00 1290.00 596.70 | 1036.00
30 4 4 140.90 | 1202.00 | 208.20 | 1312.00 229.80 | 1189.00
30 4 5 434.90 | 1257.00 | 230.70 | 1415.00 438.80 | 1248.00
30 4 6 140.30 | 1625.00 | 201.10 | 2816.00 140.50 | 1631.00
30 5 4 140.00 | 1625.00 | 201.00 | 2816.00 140.00 | 1631.00
30 5 5 140.00 | 1625.00 | 201.00 | 2816.00 140.00 | 1631.00
30 5 6 140.00 | 1625.00 | 201.00 | 2816.00 140.00 | 1631.00
35 4 4 321.80 | 1001.00 | 570.40 | 1083.00 322.60 | 1005.00
35 4 5 481.00 | 1217.00 | 263.70 | 1738.00 133.30 | 1232.00
35 4 6 340.30 | 1325.00 | 80.00 1981.00 343.20 | 1323.00
35 5 4 340.00 | 1325.00 | 80.00 1981.00 357.00 | 1323.00
35 5 6 340.00 | 1325.00 | 80.00 1981.00 357.00 | 1323.00
40 4 4 93.50 1999.00 | 110.10 | 2429.00 414.30 | 2002.00
40 4 5 172.60 | 2540.00 | 250.10 | 3394.00 172.70 | 2540.00
40 4 6 560.70 | 4924.00 | 208.40 | 10569.00 | 561.40 | 4924.00
40 5 4 559.00 | 4924.00 | 208.00 | 10569.00 | 565.00 | 4924.00
40 5 5 559.00 | 4924.00 | 326.80 | 2781.00 565.00 | 4924.00
40 5 6 152.00 | 3413.00 | 105.60 | 3522.00 565.00 | 4924.00
45 4 4 152.00 | 3413.00 | 106.00 | 3522.00 565.00 | 4924.00
45 4 5 177.00 | 1999.00 | 465.90 | 2369.00 177.30 | 1924.00
45 4 6 58.10 2426.00 | 146.60 | 3206.00 103.50 | 2449.00
45 5 5 58.00 2426.00 | 148.00 | 3206.00 105.00 | 2449.00
45 5 6 13.10 2775.00 | 148.00 | 3206.00 419.00 | 2770.00
50 4 4 299.90 | 3254.00 | 241.50 | 2783.00 160.20 | 3219.00
50 4 5 206.50 | 3883.00 | 225.30 | 3344.00 206.60 | 3881.00
50 4 6 103.50 | 6370.00 | 393.30 | 6303.00 105.70 | 6179.00
50 5 5 106.00 | 6370.00 | 393.00 | 6303.00 103.00 | 6179.00
50 5 6 106.00 | 6370.00 | 98.30 3981.00 103.00 | 6179.00
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Table 16 — GRASP for Demurrage (All criteria) - Part 1/2

A B C

Ships | Berths | Goods | Time | FO Time | FO Time | FO

15 4 5 178.30 | 1456000.00 96.10 1604516.00 178.80 | 1484000.00
15 4 6 93.10 1400000.00 491.00 | 1580445.00 287.10 | 1393000.00
15 5 5 532.00 | 1566000.00 492.00 | 1580445.00 530.60 | 1566000.00
15 5 6 529.00 | 1566000.00 492.00 | 1580445.00 530.00 | 1566000.00
15 6 5 529.00 | 1566000.00 492.00 | 1580445.00 530.00 | 1566000.00
15 6 6 529.00 | 1566000.00 492.00 | 1580445.00 530.00 | 1566000.00
20 4 4 486.30 | 1799000.00 175.40 | 2038000.00 521.40 | 1838900.00
20 4 5 503.30 | 1594000.00 39.00 1689000.00 504.00 | 1594000.00
20 4 6 579.80 | 1962000.00 305.90 | 2554252.75 208.30 | 2087000.00
20 5 4 580.00 | 1962000.00 305.00 | 2554252.75 208.00 | 2087000.00
20 5 5 580.00 | 1962000.00 305.00 | 2554252.75 208.00 | 2087000.00
20 5 6 580.00 | 1962000.00 305.00 | 2554252.75 208.00 | 2087000.00
20 6 4 580.00 | 1962000.00 305.00 | 2554252.75 208.00 | 2087000.00
20 6 5 580.00 | 1962000.00 305.00 | 2554252.75 208.00 | 2087000.00
20 6 6 580.00 | 1962000.00 305.00 | 2554252.75 208.00 | 2087000.00
25 4 4 196.50 | 1975000.00 228.60 | 2584000.00 151.00 | 1950000.00
25 4 5 408.30 | 2091000.00 8.00 2040636.75 431.20 | 2043498.00
25 4 6 294.90 | 2902000.00 323.00 | 3145762.00 342.20 | 2866411.25
25 5 4 295.00 | 2902000.00 326.00 | 3145762.00 341.00 | 2866411.25
25 5 5 295.00 | 2902000.00 326.00 | 3145762.00 341.00 | 2866411.25
25 5 6 295.00 | 2902000.00 326.00 | 3145762.00 341.00 | 2866411.25
30 4 4 295.00 | 2902000.00 326.00 | 3145762.00 341.00 | 2866411.25
30 4 5 279.70 | 4031000.00 20.10 4710113.50 279.50 | 3948000.00
30 4 6 91.20 5014000.00 364.90 | 6126144.00 93.80 5135000.00
30 5 4 91.00 5014000.00 362.00 | 6126144.00 92.00 5135000.00
30 5 5 91.00 5014000.00 362.00 | 6126144.00 92.00 5135000.00
30 5 6 91.00 5014000.00 362.00 | 6126144.00 92.00 5135000.00
35 4 4 91.00 5014000.00 362.00 | 6126144.00 92.00 5135000.00
35 4 5 321.00 | 4051000.00 181.00 | 4904059.50 187.50 | 4041000.00
35 4 6 423.00 | 4751000.00 524.50 | 6360153.50 480.00 | 4815000.00
35 5 4 422.00 | 4751000.00 524.00 | 6360153.50 478.00 | 4815000.00
35 5 6 422.00 | 4751000.00 524.00 | 6360153.50 478.00 | 4815000.00
40 4 4 480.70 | 7323000.00 512.30 | 8816906.00 254.50 | 7029000.00
40 4 5 384.80 | 9169682.00 161.10 | 11360577.00 | 382.70 | 8432680.00
40 4 6 42.20 9441043.00 576.50 | 13681706.00 | 42.60 9461335.00
40 5 4 43.00 9441043.00 584.00 | 13681706.00 | 43.00 9461335.00
40 5 5 43.00 9441043.00 584.00 | 13681706.00 | 43.00 9461335.00
40 5 6 579.60 | 10041000.00 | 530.00 | 10630841.00 | 172.60 | 9972000.00
45 4 4 584.00 | 10041000.00 | 528.00 | 10630841.00 | 172.00 | 9972000.00
45 4 5 511.60 | 7410000.00 86.70 8480322.00 236.50 | 7087088.00
45 4 6 302.20 | 9210000.00 23.00 9312000.00 210.90 | 9184000.00
45 5 5 304.00 | 9210000.00 23.00 9312000.00 210.00 | 9184000.00
45 5 6 418.50 | 9507000.00 23.00 9312000.00 210.00 | 9184000.00
50 4 4 342.20 | 6941176.00 593.50 | 9142815.00 286.80 | 7079051.00
50 4 5 341.00 | 6941176.00 596.00 | 9142815.00 289.00 | 7079051.00
50 4 6 154.70 | 11690150.00 | 102.40 | 11520055.00 | 298.40 | 12104351.00
50 5 5 151.00 | 11690150.00 | 102.00 | 11520055.00 | 297.00 | 12104351.00
50 5 6 385.00 | 13420000.00 | 102.00 | 11520055.00 | 27.10 13520000.00
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Table 17 — GRASP for Demurrage (All criteria) - Part 2/2

Criteria D E F

Ships | Berths | Goods | Time | FO Time | FO Time | FO

15 4 5 241.70 | 1552140.00 242.50 | 1552140.00 532.00 | 1658273.00
15 4 6 22.10 1567903.00 22.00 1567903.00 536.00 | 1570238.00
15 5 5 - - - - 531.00 | 1570238.00
15 5 6 - - - - 531.00 | 1570238.00
15 6 5 - - - - 531.00 | 1570238.00
15 6 6 - - - - 531.00 | 1570238.00
20 4 4 288.70 | 1760000.00 291.40 | 1760000.00 465.00 | 1700000.00
20 4 5 425.60 | 2014000.00 427.00 | 2014000.00 561.80 | 1899000.00
20 4 6 447.40 | 2921795.25 446.20 | 2921795.25 243.20 | 2355816.75
20 5 4 - - - - 241.00 | 2355816.75
20 5 5 - - - - 241.00 | 2355816.75
20 5 6 - - - - 241.00 | 2355816.75
20 6 4 - - - - 241.00 | 2355816.75
20 6 5 - - - - 241.00 | 2355816.75
20 6 6 - - - - 241.00 | 2355816.75
25 4 4 57.10 2370368.75 57.30 2370368.75 160.50 | 1975000.00
25 4 5 120.60 | 2311872.75 121.50 | 2311872.75 565.30 | 2048000.00
25 4 6 530.80 | 3564424.00 536.70 | 3564424.00 404.60 | 2926604.00
25 5 4 - - - - 407.00 | 2926604.00
25 5 5 - - - - 407.00 | 2926604.00
25 5 6 - - - - 407.00 | 2926604.00
30 4 4 - - - - 407.00 | 2926604.00
30 4 5 154.20 | 4479639.50 154.10 | 4479639.50 330.50 | 4732664.50
30 4 6 271.40 | 6267598.50 271.00 | 6267598.50 381.70 | 5875328.00
30 5 4 - - - - 381.00 | 5875328.00
30 5 5 - - - - 381.00 | 5875328.00
30 5 6 - - - - 381.00 | 5875328.00
35 4 4 - - - - 381.00 | 5875328.00
35 4 5 418.00 | 4562384.00 424.30 | 4562384.00 42.20 4048859.50
35 4 6 428.90 | 5714752.00 429.70 | 5714752.00 448.40 | 5053184.00
35 5 4 - - - - 445.00 | 5053184.00
35 5 6 - - - - 445.00 | 5053184.00
40 4 4 590.10 | 8744277.00 597.00 | 8728648.00 268.40 | 8839591.00
40 4 5 400.30 | 10542872.00 | 400.30 | 10542872.00 | 510.70 | 8811041.00
40 4 6 257.80 | 12826294.00 | 257.40 | 12826294.00 | 555.40 | 11595009.00
40 5 4 - - - - 555.00 | 11595009.00
40 5 5 - - - - 555.00 | 11595009.00
40 5 6 278.60 | 11270289.00 | 278.30 | 11270289.00 | 62.10 10229185.00
45 4 4 - - - - 62.00 10229185.00
45 4 5 83.50 8099031.00 83.80 8099031.00 309.90 | 6916076.00
45 4 6 461.40 | 9096000.00 461.00 | 9096000.00 273.80 | 9514000.00
45 5 5 - - - - 272.00 | 9514000.00
45 5 6 - - - - 36.00 9159016.00
50 4 4 125.20 | 9455166.00 124.60 | 9455166.00 374.60 | 7046383.00
50 4 5 - - - - 373.00 | 7046383.00
50 4 6 556.10 | 11299875.00 | 558.20 | 11299875.00 | 379.00 | 11727415.00
50 5 5 - - - - 382.00 | 11727415.00
50 5 6 - - - - 382.00 | 11727415.00
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